On congruent circulant matrices
Abstract
In this work, we investigate congruent circulant matrices and provide a parametrization of congruent matrices in M2(Q ). We introduce a matrix analogue of Fermat’s algorithm, which enables the construction of sequences of matrix Pythagorean triples associated with a given 2 2 congruent circulant matrix N. Furthermore, we establish a matrix version of Pythagoras’ theorem within the Euclidean vector space Mm(Q ); m >= 2.
Mathematics Subject Classification (MSC2020). 11C20, 15A15, 15A18, 15A20,
15A27, 15A60, 11D72.
https://doi.org/10.70974/mat09125086
Keywords
Full Text:
PDFReferences
J.H. Coaste, The Congruent Number Problem, Enrichment Programme For Young Mathmatics Talents Dept of Math & IMS CUHK GUEST Lecture Series Autumn Class 2002-03 (2002).
L.E. Dickson, History of the Theory of Numbers, Vol. II. New York, Chelsea (1952).
R. Cuculière, Mille ans de chasse aux nombres congruents Séminaire de Philosophie et Mathématiques, fascicule 2, «Mille ans de chasse aux nombres congruents»(1988) 1-17.
R. Alter, T. B. Curtz, A note on congruent numbers, Math. of comput. t. 28 (1974) 303-305.
L. Halbeisen, Norbert Hungerbühler, A Theorem of Fermat on Congruent Number Curves, Hardy-Ramanujan Journal, Atelier Digit_Hum (2019) 15-21. 10.46298/hrj.2019.5101. hal-01983260
J. Lagrange, Nombres congruents et courbes elliptiques Séminaire Delange Pisot-Poitou. Théorie des nombres, tome 16, n◦1 (1974-1975), exp. n◦16, 1-17.
J. Lagrange, Construction d’une table de nombres congruents Mémoires de la S. M. F., tome 49-50 (1977) 125-130.
B.R. Hemenway,On Recognizing Congruent Prime. Master Thesis, Simon Fraiser University, Burnaby (2006). http://summit.sfu.ca/item/6418
T. Evink, J. Top, J.D. Top, A Remark on Prime (non) Congruent Numbers, Quaestiones Mathematicae 45 (2021) 1841-1853.
https://doi.org/10.2989/16073606.2021.1977410
P. de Fermat, Fermat’s Diophanti Alex. Arith., 1670 in Œuvres III (Ministère de l’instruction publique, ed.), Gauthier-Villars et ls, Paris (1896) 254-256.
P. Monsky, Mock Heegner Points and Congruent Numbers, Mathematische Zeitschrift 204 (1990) 45-67. https://doi.org/10.1007/BF02570859
K. Conrad, The Congruent Number Problem, University of Connecticut Storrs, CT 06269 (2015).
L.D. Keuméan, F.E. Tanoé, A New Proof for Congruent Number’s Problem via Pythagorean Divisors, Advances in Pure Mathematics 14 (2024) 283-302.
https://doi.org/10.4236/apm.2024.144016
J.M. Mouanda, J.R. Tsiba, K. Kangni, On Fermat’s Last Theorem Matrix Version and Galaxies of Sequences of Circulant Matrices with Positive Integers as Entries, Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, 22(2) (2022) 1.
J.M. Mouanda, J.R. Tsiba, K. Kangni, On galaxies of sequences of matrix Pythagorean triples and completely Pythagorean maps, Journal of Applied Math. 3(3) (2025) 2609. https://doi.org/10.59400/jam2609
P.J. Davis, circulant Matrices 1st edition, John Wiley and Sons, New York (1979).
D. Kalman, J.E. White, Polynomial Equations and Circulant Matrices, The Mathematical Association of America, Monthly 108 (2001).
K. Irwan, S.R. Simanca, On Circulant Matrices, American Mathematical Society (2004). DOI: 10.1090/noti804
N.M. Stephens, Congruence Properties of Congruent Numbers, Bulletin of the London Mathematical Society 7 (1975) 182-184. https://doi.org/10.1112/blms/7.2.182.
Scientific_Workplace_pro5.5. Available online.
https://scientificworkplace.software.informer.com
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 F. Emmanuel Tanoe