Evaluation des Relations entre les Propriétés Intrinsèques des Sols de Termitières Macrotermes sp

Louis AHOUET

Résumé


La valorisation des matériaux locaux appropriés contribue à la réduction des coûts et de l’impact
environnemental des constructions. Cette étude met en place un outil de travail pour les laboratoires de travaux
publics pour l’identification des matériaux de construction en phase d’études préliminaires. Pour atteindre cette
objectif, les corrélations entre les propriétés fondamentales des sols sont développer à partir des modèles
mathématiques ayant le coefficient de détermination (R2) les plus élevés et le coefficient statistique (χ²) le plus
faible. Les sols étudiés sont des argiles inactives et normales de faible à Moyenne plasticité, contenant les
minéraux (kaolinite, illite, montmorillonite). Le potentiel de gonflement des sols varie de faible - moyen et
élevé. Les relations entre les propriétés intrinsèques des sols sont des ajustements linéaires, exponentiels et à pic
unique avec des coefficients R2 (0,503 - 0,984) et χ² (0,00939 - 0,0228). La relation fondamentale entre
l’activité et la fraction argileuse permet de prédire plusieurs paramètres. En effet, en connaissant uniquement la
fraction argileuse obtenue de l’analyse granulométrique, on peut prédire dix paramètres (LL, LP, IP, VBS, Ac,
CEC, SS, AR, As, ACEC) par les relations développées


Mots-clés


Propriétés intrinsèques, limite de liquidité, indice de plasticité, sol de termitière macrotermes sp

Texte intégral :

PDF

Références


Dipankar Bera, Sudip Bera, Nilanjana Das Chatterjee (2020). Termite mound soil properties in West Bengal, India. Geoderma Regional, Volume 22, September 2020, e00293. https://doi.org/10.1016/j.geodrs.2020.e00293

P. Jouquet, N. Guilleux, L. Caner, S. Chintakunta, M. Ameline, R. R. Shanbhag (2015). Influence of soil pedological properties on termite mound stability. Geoderma, Volume 262, 15 January 2016, Pages45-51. https://doi.org/10.1016/j.geoderma.2015.08.020.

Holt John A., and Michel Lepage. “Termites and soil properties” Termites Evolution Sociality Symbioses Ecology, 2000.

Boyer, P. (1982). Aspects of the action of termites on the clay soil. Clay Minerals 17, 453462.

doi: https://doi.org/10.1180/claymin.1982.017.4.08

Jouquet L., Mamou M., Lepage B.,Velde (2002). Effect of termites on clay minerals in tropical soils: fungus-growing termites as weathering agents, Eur. J. Soil Sci. 53 (2002) 1–7.

Louis Ahouet, Mondésire Odilon Ngoulou, Sylvain Ndinga Okina, Sorel Dzaba (2022). Geotechnical Characterization of Termite Mound Soils of Congo. Open Journal of civil engineering, Vol.12 No.3, September 2022,

doi: 10.4236/ojce.2022.123021

Arshad, M.A. (1982). Influence of the termite Macrotermes michaelseni (Sjost) on soil fertility and vegetation in a semi-arid savanna ecosystem. Agro-Ecosystems 8, 47–58.

Arshad, M.A. (1981). Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Science 132, 161–174.

Garnier-Sillam, E. and Harry, M. (1995). Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42, 167–185. https://doi.org/10.1007/BF01242453

Isabel C. Vinhal-Freitas, Gilberto F. Corrêa, Beno Wendling, Lenka Bobulská, Adão S. Ferreira (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, Volume 74, March 2017, Pages 182-190

https://doi.org/10.1016/j.ecolind.2016.11.020

Lobry de Bruyn and Conacher (1990). The role of termite and ants in soil modification a rewiew. Soil Research, 28 (1), 55-93.

Enagbonma, B.J., Babalola, O.O.(2020). Unveiling Plant-Beneficial Function as Seen in Bacteria Genes from Termite Mound Soil. J Soil Sci Plant Nutr 20, 421–430 (2020). https://doi.org/10.1007/s42729-019-00124-w

Bignell D.E., Eggleton P. (2000). Termites in Ecosystems. Termites: Evolution, Sociality, Symbioses, Ecology, (Eds) Springer, Dordrecht, pp 363-387,

https://doi.org/10.1007/978-94-017-3223-9_17

Trapnell C.G., Friend M.T., Chamberlain G.T. and Birch H. F. (1976). The effect of fire and termites on a Zambian woodland soil. Journal of Ecology, Vol. 64, No.2, pp. 577-588. https://doi.org/10.2307/2258774.

Skemptom AW (1953). The colloidal “Activity” of clays. Proceedings of the 3rdInternational Conference of soil Mechanics and foundation Engineering, 1953. (1) 57-60.

Mustapha Amrani, Yassine Taha, Abdellatif Elghali, Mostafa Benzaazoua, Azzouz Kchikach, Rachid Hakkou. “An experimental investigation on collapsible behavior of dry compacted phosphate mine waste rock in road embankment”, Transportation Geotechnics 2021, volume 26.

https://doi.org/10.1016/j.trgeo.2020.100439

Dolinar, B., Trauner, L (2004). Liquid Limit and Specific Surface of Clay Particles. Geotechnical testing journal, 2004 -astm.org, Volume 27, Issue 6. ASTM International. doi: 10.1520/GTJ11325.

Cerato A, Lutenegger AJ (2005). Activity, relative activity and specific surface area of fine – grained soils, Proceedings of the 16th International Conference of Soil Mechanics and Geotechnical Engineering (ICSMGE), 2.

https://doi.org/10.3233/978-1-61499-656-9-325

Ahouet L., Ngoulou M.O., Ndinga Okina S., Kimbatsa F.T. (2022). Study of the relationship between the fundamental properties of fine soils and those of mathematical models of particle size distribution and geotechnical quantities. Arabian Journal of Geoscience (2022) 15:1173. https://doi.org/10.1007/s12517-022-10378-x

NF P 11-300 (1992) French standard. Execution of earthworks. Classification of materials for use in the construction of embankments. Execution of earthworks. Classification of materials for use in the construction of embankments, AFNOR, 3-21

NF P 94–056 (1996) French standard. Soils: recognition and tests. Analyse granulométrique. Method by dry sieving after washing, AFNOR, 5–15

NF P94-057 (1992) French standard. Soils: recognition and tests. Granulometric analysis. Sedimentation method, AFNOR, 4–17

NF P94-051 (1993) French standard. Soils: recognition and tests. Determination of Atterberg limits. Limit of liquidity at the cup - limit of plasticity at the roller. AFNOR, 4–14.

NF P94-068 (1998). French standard. Soils: Investigation and testing – Measuring of the methylene blue adsorption capacity of a rocky soil. Determination of the methylene blue of a soil by means of the strain test, October 1998.

Quigley R.M., Sethis A.J., Boonsinsuk P., Sheeren D.E and Yong R.N. (1985). Geologic controls on soil composition and properties, Lake Ojibway Clay Plain, Matagami, Quebec. Canadian Geotechnical Journal (22) 491-500.

Louis Ahouet, Sorel Dzaba, Brice Dublin Mbossa Elenga, Sylvain Ndinga Okina, Fabien T. Kimbatsa. Characterization of the activity, mineralogy and correlations between the properties of clayey soils. JMMCE, Vol. 10 No. 5, September 2022, DOI : 10.4236/jmmce.2022.105029

Mitchell JK (1976) Fundamentals of soil behavior. John Wiley and Sons, New York.

Locat L, Tanaka H, Tan TS, Desari GR, Lee H (2003). Natural soils: geotechnical behavior and geologic knowledge. Charact Eng Properties Nat Soil 1:3–28.

Yeliz Yukselen-Aksoy, Abidin Kaya. “Method dependency of relationships between specific surface area and soil physicochemical properties”, Applied Clay Science, 2020. Volume 50, issue 2.

https://doi.org/10.1016/j.clay.2010.07.020

Millogo et al. 2011. Microstructure, physical and mechanical properties of clayey material from termite mound: a stabilized material for adobe building, 1-20.

SIE Kam et al. (2009). Clay ceramics from Burkina Faso used in building construction.

Delgado M.C.J., Guerrero I.C. 2007. The selection of soils for stabilized earth building: A normative review. Construction and Building Materials, 21, p. 237–251.


Renvois

  • Il n'y a présentement aucun renvoi.