Analyse de la tendance des émissions anthropiques de méthane (CH4) en Afrique de l’Ouest entre 1970 et 2023 : une approche par cluster
Abstract
Trend analysis of anthropogenic methane (CH₄) emissions in West Africa from 1970 to 2023: A Cluster-Based Approach
Temporal trends in anthropogenic CH4 emissions over West Africa derived from EDGAR data for the period 1970–2023 were analyzed using a clustering technique. The Liebmann method and Hubert segmentation were employed to characterize the time series within each cluster and to identify breakpoints as well as modes of variability in anthropogenic emissions. This approach made it possible to distinguish three clusters, described as follows: Cluster 1 (Benin, Cape Verde, The Gambia, Guinea-Bissau, Liberia, Mauritania, Senegal, Sierra Leone, and Togo), characterized by low emissions; Cluster 2 (Côte d’Ivoire, Ghana, Guinea, Burkina Faso, and Mali), exhibiting intermediate emission levels; and Cluster 3 (Nigeria), characterized by high emissions. The mean emission growth rates were estimated at 19.27 ± 5.78 Gg yr-1, 64.18 ± 19.25 Gg yr-1, and 43.49 ± 13.04 Gg yr-1 for Clusters 1, 2, and 3, respectively. The results indicate that the number of breakpoints ranges from one to three, with different durations and intensities. Cluster 3 exhibits the smallest number of breakpoints (one), whereas Cluster 2 shows the largest (three). Furthermore, a trend analysis based on least-squares linear regression reveals the existence of two modes of variability: a low-frequency variability (time windows > 35 years), characterized exclusively by a gradual increase in emissions; and a high-frequency variability (time windows ≤ 20 years), associated with alternating positive and negative phases, reflecting significant short-term fluctuations.
Keywords
Full Text:
PDF (Français)References
GIEC, Résumé à l’intention des décideurs. In : Changement climatique 2021 : les bases scientifiques physiques. Contribution du Groupe de travail I au sixième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [publié sous la direction de Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, et B. Zhou], Cambridge University Press, Cambridge University sixième Rapport (2021) 308. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SummaryVolume_French.pdf
Z. Qi et R. Feng, Global natural and anthropogenic methane emissions with approaches, potentials, economic costs, and social benefits of reductions: Review and outlook, Journal of Environmental Management 373 (2025) 123568. https://doi.org/10.1016/j.jenvman.2024.123568.
P. M. Forster, C.J. Smith, T. Walsh, W.F. Lamb, R. Lamboll, M. Hauser, A. Ribes, D. Rosen, N. Gillett, M.D. Palmer, J. Rogelj, K. Von Schuckmann, S.I. Seneviratne, et al., Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence, Earth Syst. Sci. Data 15(6) (2023) 2295‑2327. https://doi.org/10.5194/essd-15-2295-2023.
OMM, Bulletin annuel sur les gaz à effet de serre, Genève, Bulletins scientifiques 19 (2023). https://library.wmo.int/idurl/4/68705. Consulté le 24/09/2025.
M. Saunois, A.R. Stavert, B. Poulter, P. Bousquet, J.G. Canadell, R.B. Jackson, P.A. Raymond, E.J. Dlugokencky, S. Houweling, P.K. Patra, P. Ciais, V.K. Arora, D. Bastviken, P. Bergamaschi, D.R. Blake, G. Brailsford, L. Bruhwiler, K.M. Carlson, M. Carrol, S. Castaldi, et al., Supplemental data of the Global Carbon Project Methane Budget 2019, Global Carbon Project (2019). https://doi.org/10.18160/gcp-ch4-2019.
T. D. Tiemoko, M. Ramonet, F. Yoroba, K.B. Kouassi, K. Kouadio, V. Kazan, C. Kaiser, F. Truong, C.Vuillemin, M. Delmotte, B. Wastine, P. Ciais, Analysis of the temporal variability of CO2, CH4 and CO concentrations at Lamto, West Africa, Tellus B: Chemical and Physical Meteorology 73 (1) (2021) 1863707. https://doi.org/10.1080/16000889.2020.1863707.
UNEP, A. Olhoff, C. Bataille, J. Christensen, M. Den Elzen, T. Fransen, N. Grant, K. Blok, J. Kejun, E. Soubeyran, W. Lamb, K. Levin, J. Portugal-Pereira, M. Pathak, T. Kuramochi, C. Strinati, S. Roe, J. Rogelj, Emissions Gap Report 2024: No more hot air … please! With a massive gap between rhetoric and reality, countries draft new climate commitments, United Nations Environment Programme (2024) 1-100. https://doi.org/10.59117/20.500.11822/46404.
M. F. Lunt, P. I. Palmer, L. Feng, C. M. Taylor, H. Boesch, et R. J. Parker, An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data, Atmos. Chem. Phys. 19 (23) (2019) 14721‑14740). https://doi.org/10.5194/acp-19-14721-2019.
S. L. H. Yapo, K. G. Kouadio, E.-M. Assamoi, V. YobouE, J. Bahino, et S. Keita, Estimation of Methane Emissions Released from a Municipal Solid Waste Landfill Site through a Modelling Approach: A Case Study of Akouédo Landfill, Abidjan (Côte d’Ivoire), International Journal of Science and Research (IJSR) 8 (5) (2019), 1587-1593. https://doi.org/10.21275/ART20198118
G. Pison et S. Poniakina, Tous les pays du monde (2024), Population & Sociétés, 626 (9) (2024) 1‑8. https://doi.org/doi/10.3917/popsoc.626.0001.
A. R. Tano, F.-X. D. B. Bouo, J. K. Kouamé, Y. Tchétché, S. D. Zézé, et B. Ouattara, Rainfall Variability and Trends in West Africa, ACS 13 (01) (2023) 72‑83. https://doi.org/ 10.4236/acs.2023.131006.
M. R. Anderberg, Cluster-analysis for applications, Academic Press, New York (1973) 1-19.
L. S. Kalkstein, G. Tan, et J. A. Skindlov, An evaluation of three clustering procedures for use in synoptic, Journal of Climatology and Applied Meteorology, 1987 (26) (1987) 717‑730. https://doi.org/10.1175/1520-0450(1987)026<0717: AEOTCP>2.0.CO;2.
M. Yan, Methods of Determining the Number of Clusters in a Data Set and a New Clustering Criterion, Thesis, Faculty of the Virginia Polytechnic and State University, United States (2005) 120. Consulté le 20/08/20250.
O. Jorba, F. Rocadenbosch, et J. Baldasano, Cluster Analysis of 4-Day Back Trajectories Arriving in the Barcelona Area, Spain, from 1997 to 2002, Journal of Applied Meteorology, 43(6) (2004) 887–901. https://doi.org/10.1175/1520-0450(2004)043<0887:caodbt>2.0.co;2.
D. T. Tiemoko, F. Yoroba, J.D. Paris, A. Diawara, A. Berchet, I. Pison, A. Riandet, et M. Ramonet, Source–Receptor Relationships and Cluster Analysis of CO2, CH4, and CO Concentrations in West Africa: The Case of Lamto in Côte d’Ivoire, Atmosphere 11 (9) (2020) 1-23. https://doi.org/10.3390/atmos11090903.
M. L. Gonsan, F.-X.D.B. Bouo, R.A.Tano, T.D. Tiémoko, A.J. Adon, K.J. Kouamé, Y. Tchétché, D.S. Zézé, B. Ouattara, Y. Kramo, F.N. Koffi, Analysis of annual CO2 gas emissions in West Africa, AES 7(1) (2023) 1‑5. https://doi.org/10.24966/AES-8780/100038.
A. M. Kouassi, T. M. N. Bi, K. F. Kouamé, K. A. Kouamé, J.-C. Okaingni, et J. Biemi, Application de la méthode des simulations croisées à l’analyse de tendances dans la relation pluie-débit à partir du modèle GR2M : cas du bassin versant du N’zi-Bandama (Côte d’Ivoire), Comptes Rendus. Géoscience 344(5) (2012) 288‑296. https://doi.org/10.1016/j.crte.2012.02.003.
B. Liebmann, R. M. Dole, C. Jones, I. Bladé, et D. Allured, Influence of Choice of Time Period on Global Surface Temperature Trend Estimates, Bulletin of the American Meteorological Society 91 (11) (2010) 1485‑1492. https://doi.org/10.1175/2010BAMS3030.1.
A. Diawara, F. Yoroba, K.Y. Kouadio, K.B. Kouassi, E.M. Assamoi, A. Diedhiou, P. Assamoi, Climate Variability in the Sudano-Guinean Transition Area and Its Impact on Vegetation: The Case of the Lamto Region in Côte d’Ivoire, Advances in Meteorology 2014 (2014) 1‑11, https://doi.org/10.1155/2014/831414.
D. T. Tiemoko, F. Yoroba, A. Diawara, K. Kouadio, B. K. Kouassi, et A. L. M. Yapo, Understanding the Local Carbon Fluxes Variations and Their Relationship to Climate Conditions in a Sub-Humid Savannah-Ecosystem during 2008-2015: Case of Lamto in Cote d’Ivoire, ACS 10 (02) (2020) 186‑205. https://doi.org/10.4236/acs.2020.102010.
O. L. Bebeteidoh, S. Kometa, K. Pazouki, et R. Norman, Sustained impact of the activities of local crude oil refiners on their host communities in Nigeria, Heliyon 6 (6) (2020) 1-9. https://doi.org/10.1016/j.heliyon.2020.e04000.
O. B. Okedere, F. B. Elehinafe, S. Oyelami, et A. O. Ayeni, Drivers of anthropogenic air emissions in Nigeria - A review, Heliyon 7 (3) (2021) 1-13. https://doi.org/10.1016/j.heliyon.2021.e06398.
S. O. Giwa, C. N. Nwaokocha, S. I. Kuye, et K. O. Adama, Gas flaring attendant impacts of criteria and particulate pollutants: A case of Niger Delta region of Nigeria, Journal of King Saud University - Engineering Sciences 31 (3) 2019 209‑217. https://doi.org/10.1016/j.jksues.2017.04.003.
P. Hubert, J. P. Carbonnel, et A. Chaouche, Segmentation des séries hydrométéorologiques, application à des séries de précipitations et de débits de l’Afrique de l’ouest, Journal of Hydrology 110 (3‑4) 1989 349‑367. https://doi.org/10.1016/0022-1694(89)90197-2.
E. E. Ago, E. K. Agbossou, P. Ozer, et M. Aubinet, Mesure des flux de CO2 et séquestration de carbone dans les écosystèmes terrestres ouest-africains (synthèse bibliographique), Biotechnol. Agron. Soc. Environ. 20 (1) (2016) 68‑82. https://doi.org/10.25518/1780-4507.12565.
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Dro Touré TIEMOKO