Potassium-doped kaolinitic clay from Agboville (Côte d’Ivoire): structural characterization, adsorption behavior, and thermodynamic insights
Abstract
This study investigates the adsorption of potassium ions onto thermally activated kaolinitic clay from Agboville (Côte d’Ivoire), with emphasis on the influence of particle size and precursor type (K2CO3 vs. CH3CO2K). The 100–250 µm fraction exhibited the highest performance, with maximum adsorption capacities of 149.84 mg g-1 (K2CO3) and 198.91 mg g-1 (CH3CO2K), the latter providing the most efficient uptake. Potassium acetate produced the most homogeneous and effective incorporation of K+, and was therefore selected as the reference system for further interpretation. The Temkin isotherm model gave the best fit (R2 = 0.9894), while adsorption kinetics followed the pseudo-second-order model (R2 = 0.998), indicating a chemisorption-controlled mechanism. Thermodynamic parameters (ΔG° = -6.16 to -8.55 kJ mol-1; (ΔH° = +17.8 kJ mol-1; (ΔS° = +80.3 J mol-1 K-1) confirmed a spontaneous and endothermic process. Characterization analyses revealed surface and bonding modifications induced by potassium doping: attenuation of ν(OH) bands (3695–3620 cm-1) and a shift of the ν(Si-O) vibration to ∼ 1010 cm-1 (FT-IR), an increase in pHPZC from 4.6 to 6.2, homogeneous K+ distribution (1.0–3.0 at. %, EDS), and thermal stability above 700 °C (TGA/DTG). Overall, potassium-doped Agboville clay, particularly when prepared with CH3CO2K, appears as a low-cost, thermally robust and highly basic local adsorbent suitable for aqueous pollutant removal and catalytic support applications.
Keywords
Full Text:
PDFReferences
Hamdi, S., Jellali, S., & Ghorbel-Abid, I. (2024). Natural and modified clays as low-cost and ecofriendly adsorbents: A review. Journal of Environmental Management, 360, 120116. https://doi.org/10.1016/j.jenvman.2024.120116
Ochirkhuyag, A., Sanz-Pérez, E. S., & Hlaváček, V. (2024). The catalytic potential of modified clays: A comprehensive review. Minerals, 14(2), 214. https://doi.org/10.3390/min14020214
Alvarez-Coscojuela, A., Marco-Gibert, J., Mañosa, J., Formosa, J., & Chimenos, J. M. (2024). Thermal activation of kaolinite through potassium acetate intercalation: A structural and reactivity study. Applied Clay Science, 259, 107515. https://doi.org/10.1016/j.clay.2024.107515
Kashif, M., Mohamed, A., & Said, A. (2024). Investigating the effects of calcination temperature on porous clay heterostructures: Insights from thermal and structural analysis. Thermochimica Acta, 734, 180024. https://doi.org/10.1016/j.tca.2024.180024
RILEM TC 282-CCL. (2022). Calcined clays for sustainable concrete – State-of-the-art review. Materials and Structures, 55, 187. https://doi.org/10.1617/s11527-022-02031-0
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 3039817. https://doi.org/10.1155/2017/3039817
Chemical Engineering Journal Advances]. (2023). Advanced adsorption isotherm models: Revisiting Toth, Redlich–Peterson and Radke–Prausnitz approaches for heterogeneous systems. Chemical Engineering Journal Advances, 15, 100377. https://doi.org/10.1016/j.ceja.2023.100377
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
Lima, E. C., & Hosseini-Bandegharaei, A. (2018). A critical review of the use of the van’t Hoff equation in adsorption thermodynamics. Journal of Molecular Liquids, 273, 425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Tran, H. N. (2021). Thermodynamic parameters of liquid-phase adsorption processes: Meaning, significance and challenges. Journal of Environmental Chemical Engineering, 9(6), 106595. https://doi.org/10.1016/j.jece.2021.106595
Journal of Physical Chemistry. (2024). Revisiting the van’t Hoff equation: Non-linear approaches for reliable adsorption thermodynamics. Journal of Physical Chemistry C, 128(12), 4567–4578. https://doi.org/10.1021/acs.jpcc.3c09321
Liu, Z., Zhang, P., & Xu, W. (2023). Influence of particle size and porosity on metal ion adsorption capacity of modified clays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, 130595. https://doi.org/10.1016/j.colsurfa.2022.130595
Zhang, Y., Tang, L., & Li, J. (2021). Tailoring the surface of clay minerals for enhanced catalytic applications. Applied Surface Science, 563, 150313. https://doi.org/10.1016/j.apsusc.2021.150313
Gao, Y., Wang, H., Zhang, J., & Chen, L. (2024). Modification of kaolinite and bentonite for improved adsorption of heavy metals: mechanisms and applications. Journal of Environmental Chemical Engineering, 12(1), 110123. https://doi.org/10.1016/j.jece.2023.110123
Shaban, M., El-Raey, R., & Rabia, M. (2022). Potassium-modified clays as efficient heterogeneous catalysts for biodiesel production. Renewable Energy, 181, 922–933. https://doi.org/10.1016/j.renene.2021.09.042
Boudriche, L., Calvet, R., Hamdi, B., & Kessaissia, Z. (2021). Acid activation of bentonite: Influence of acid concentration and reaction time on textural and structural properties. Applied Clay Science, 205, 106041. https://doi.org/10.1016/j.clay.2021.106041
Huang, L., Wu, D., & Chen, Y. (2021). Effect of calcination on surface chemistry and porosity of clays for catalytic applications. Microporous and Mesoporous Materials, 328, 111468. https://doi.org/10.1016/j.micromeso.2021.111468
Jiang, X., Li, P., & Xu, R. (2023). pH-dependent adsorption behaviors of alkali and alkaline earth metals on natural and modified clays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 661, 131006. https://doi.org/10.1016/j.colsurfa.2023.131006
Kouadio, K. A. (2022). Comparative mineralogical and physicochemical characterization of Ivorian clays for industrial applications. Applied Clay Science, 228, 106634. https://doi.org/10.1016/j.clay.2022.106634
Katiola Study (2024). Adsorption behaviour of smectite-rich kaolins from central Côte d’Ivoire. Environmental Nanotechnology, Monitoring & Management, 22, 101015. https://doi.org/10.1016/j.enmm.2024.101015
Nigeria Clay Review (2024). Review of clay modification and applications in West Africa. Applied Surface Science Advances, 17, 100422. https://doi.org/10.1016/j.apsadv.2024.100422
Ogunniyi, D. S. (2025). Performance of Nigerian bentonite clays under saline and thermal conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131254. https://doi.org/10.1016/j.colsurfa.2025.131254
Sanogo, A., et al. (2023). Activation and characterization of Burkina Faso kaolins for adsorption applications. Journal of Environmental Chemical Engineering, 11(4), 109876. https://doi.org/10.1016/j.jece.2023.109876
Munnik, P.; de Jongh, P. E.; de Jong, K. P. (2015). Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. https://doi.org/10.1021/cr500486u
Wei, L.; Haije, W.; Kumar, N. (2021). Influence of Nickel Precursors on the Properties and Performance of Ni-Impregnated Zeolite 5A and 13X Catalysts in CO₂ Methanation. Catal. Today 2021, 362, 35–46. https://doi.org/10.1016/j.cattod.2020.05.025
Winter, F. L.; Diehl, P.; Telaar, P. (2024). Influence of the Catalyst Precursor for Cobalt on Activated Carbon Applied in Ammonia Decomposition. Catal. Today 2024, 429, 114502. https://doi.org/10.1016/j.cattod.2023.114502
Cheng, H.; Liu, Q.; Yang, J.; Zhang, Q.; Frost, R. L. (2012). Mechanism of Dehydroxylation Temperature Decrease and High-Temperature Phase Transition of Kaolinite Intercalated by Potassium Acetate. J. Colloid Interface Sci. 2012, 378, 104–110. https://doi.org/10.1016/j.jcis.2012.02.065
Espinosa-Alonso, L. (2008). Drying of Impregnated γ-Al₂O₃: Effects on Distribution/Interaction of Ni Salts. J. Phys. Chem. C 2008, 112, 7201–7209. https://doi.org/10.1021/jp710676v
Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Camile Medy Nongbé