Caractérisation et analyse de l'influence des conditions météorologiques sur les interruptions du réseau de distribution d'électricité au Sénégal

Seydina O. Ndiaye et al.

Abstract


Characterization and analysis of the influence of weather conditions on power distribution network interruptions in Senegal

This study analyzes the typologies of power outages in Senegal and assesses the impact of meteorological parameters, particularly rainfall, on their occurrence. Based on electricity distribution data from 2021, we identified the most affected periods, with a marked concentration of outages during the rainy season, especially in August. Three categories of interruptions were distinguished. The first two—namely outages and load shedding—are planned or induced events, whereas the third category, referred to as “other interruptions,” encompasses unplanned events. This latter category is further subdivided into transient, semi-permanent, and permanent interruptions. The results indicate that unplanned interruptions (“other interruptions”) are the most frequent (65 %), followed by outages (22 %) and load shedding (13 %). Unlike outages and load shedding, the occurrence of other interruptions is strongly influenced by seasonal parameters. With regard to undelivered energy, other interruptions also dominate (45 %), ahead of outages (30 %) and load shedding (25 %). Although outages are of longer duration, their frequency remains relatively low, particularly during the dry season. By contrast, only the category of unplanned interruptions exhibits a pronounced seasonal pattern, with higher frequencies between June and September, peaking in August. No clear seasonality is observed for outages and load shedding. Finally, the study highlights that rainfall has a significant impact on the majority of interruptions, unlike wind speed and temperature, whose influence remains limited.

 

https://doi.org/10.70974/mat09225132


Keywords


Power outages; Weather conditions; Precipitation; Distribution network; Seasonality

Full Text:

PDF (Français)

References


GIEC (2021). Résumé pour les décideurs, p6. In : Changement climatique 2021 : Les éléments scientifiques. Contribution du groupe de travail I au sixième rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, et B. Zhou (eds.)]. In Press

IPCC. (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.https://doi.org/10.1017/9781009157896

Ma, Z., Zhao, Z., Liu, C., Yang, F., & Wang, M. (2022). The impacts and adaptation of climate extremes on the power system: Insights from the texas power outage caused by extreme cold wave. Chinese Journal of Urban and Environmental Studies, 10(01), 2250004. https://doi.org/10.1016/j.renene.2021.05.078

Salman, A. M., & Li, Y. (2017). Assessing climate change impact on system reliability of power distribution systems subjected to hurricanes. Journal of Infrastructure Systems, 23(1), 04016024. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000316

Wanik, D. W., Anagnostou, E. N., Astitha, M., Hartman, B. M., Lackmann, G. M., Yang, J., ... & Frediani, M. E. B. (2018). A case study on power outage impacts from future hurricane sandy scenarios. Journal of Applied Meteorology and Climatology, 57(1), 51-79. https://doi.org/10.1175/JAMC-D-16-0408.1

Xue, J., Mohammadi, F., Li, X., Sahraei-Ardakani, M., Ou, G., & Pu, Z. (2020). Impact of transmission tower-line interaction to the bulk power system during hurricane. Reliability engineering & system safety, 203, 107079. https://doi.org/10.1016/j.ress.2020.107079

García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., & Fischer, E. M. (2010). A review of the European summer heat wave of 2003. Critical Reviews in Environmental Science and Technology, 40(4), 267-306. https://doi.org/10.1080/10643380802238137

Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., & Ulbrich, U. (2004). The 2003 European summer heatwaves and drought-synoptic diagnosis and impacts. Weather, 59(8), 209-216. https://oceanrep.geomar.de/id/eprint/30311/1/200459803_ftp.pdf

Zimba, S. K., Houane, M. J., & Chikova, A. M. (2020, August). Impact of tropical cyclone Idai on the Southern African electric power grid. In 2020 IEEE PES/IAS PowerAfrica (pp. 1-5). IEEE. https://doi.org/10.1109/PowerAfrica49420.2020.9219944

Chikoore, H., Vermeulen, J. H., & Jury, M. R. (2015). Tropical cyclones in the Mozambique channel: January–March 2012. Natural Hazards, 77, 2081-2095. https://doi.org/10.1007/s11069-015-1691-0

Antwi, M., & Sedegah, D. D. (2018). Climate change and societal change—impact on hydropower energy generation. In Sustainable Hydropower in West Africa (pp. 63-73). Academic Press. https://doi.org/10.1016/B978-0-12-813016-2.00005-8

Pappis, I., Sridharan, V., Howells, M., Medarac, H., Kougias, I., Sánchez, R. G., ... & Usher, W. (2022). The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint. Environmental Research Letters, 17(4), 044048. https://doi.org/10.1088/1748-9326/ac5ede

IEA (2022), Africa Energy Outlook 2022, IEA, Paris https://www.iea.org/reports/africa-energy-outlook-2022

Cissokho, L. (2019). The productivity cost of power outages for manufacturing small and medium enterprises in Senegal. Journal of Industrial and Business Economics, 46(4), 499-521.https://doi.org/10.1007/s40812-019-00128-8

Ba, A.S. (2018). The energy policy of the Republic of Senegal.HAL Id: hal-01956187 https://hal.science/hal-01956187v1

Yujun, He. (2015). Contribution au réglage de la tension sur un réseau HTA avec producteurs. Apport de la flexibilité de la demande.. Autre. CentraleSupélec. Français. ffNNT : 2015CSUP0005ff. fftel-01323017f

Groupe de la Banque Africaine de Développement (BAD). (2020). Rapport annuel 2020. https://www.afdb.org/fr/documents/rapport-annuel-2020

Sultan, B., & Janicot, S. (2000). Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophysical Research Letters, 27(20), 3353-3356. https://doi.org/10.1029/1999GL011285

Nicholson, S. E. (2013). The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. International Scholarly Research Notices, 2013(1), 453521. https://doi.org/10.1155/2013/453521

MacCarthy, D. S., Akinseye, F. M., Ly, M., Timpong-Jones, E. C., Hathie, I., & Adiku, S. G. K. (2023). Modelling the impact of climate change on agriculture in West Africa. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230340603

Diedhiou, A., Bichet, A., Wartenburger, R., Seneviratne, S. I., Rowell, D. P., Sylla, M. B., ... & Affholder, F. (2018). Changes in climate extremes over West and Central Africa at 1.5 C and 2 C global warming. Environmental Research Letters, 13(6), 065020. https://doi.org/10.1088/1748-9326/aac3e5

ESMAP (2011). Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation. World Bank.https://www.esmap.org/sites/esmap.org/files/E-Book_Climate%20Impacts%20on%20Energy%20Systems_BOOK_resized.pdf

Hersbach H, Bell B, Berrisford P, et al. (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730): 1999–2049.chttps://doi.org/10.1002/qj.3803


Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Aziz Serigne Abdoul NIANG