Prediction of energy injected into the grid using a hybrid artificial intelligence approach: case of the Ten Merina photovoltaic solar power plants (Senegal)

El Hadji Mbaye Ndiaye et al.

Abstract


This paper presents a Hybrid Particle Swarm Adaptive Neuro Fuzzy Inference System (HPSANFIS) technique for predicting the energy injected into the grid by a photovoltaic (PV) power plant. In the proposed predictive model, Particle Swarm Optimization (PSO) was selected as the optimizer for the training process of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed method is validated by using actual data from the Ten Merina solar power plants in Senegal. The artificial intelligence (AI) method is compared with methods based on the performance ratio (A1 method) and the method of the online simulation software Photovoltaic Geographical Information System. These methods were implemented on MATLAB/Simulink. A daily production prediction was made and analyzed according to the season (dry or rainy). The performance study showed Root Mean Square Error of 0.6823 kWh, 23.9178 kWh, and 133.0048 kWh, respectively, for the proposed model, A1, and Photovoltaic Geographical Information System models.  This study also showed that the proposed model has the highest yield across all seasons.

 

https://doi.org/10.70974/mat09125145


Keywords


Prediction ; PSO ; HPSANFIS ; Photovoltaic Geographical Information System; Artificial Intelligence ; Solar power plant

Full Text:

PDF

References


E. M. Ndiaye, A. Ndiaye, and M. Faye, “Design and Implementation of a Hybrid Neuro-Fuzzy Corrector for DC Bus Voltage Regulation,” EAI Endorsed Trans. Energy Web, p. 166551, 2020, doi: 10.4108/eai.8-10-2020.166551.

E. M. Ndiaye, A. Ndiaye, and M. Faye, “Experimental Validation of PSO and Neuro-Fuzzy Soft-Computing Methods for Power Optimization of PV installations,” in 8th IEEE International Conference on Smart Grid, 2020, pp. 189–197. doi: 10.1109/icsmartgrid49881.2020.9144790.

K. Jaiganesh, K. Bharath Simha Reddy, B. K. D. Shobhitha, and B. Dhanush Goud, “Enhancing the efficiency of rooftop solar photovoltaic panel with simple cleaning mechanism,” Mater. Today Proc., vol. 51, pp. 411–415, 2021, doi: 10.1016/j.matpr.2021.05.565.

A. A. S. Mohamed, H. Metwally, A. El-Sayed, and S. I. Selem, “Predictive neural network based adaptive controller for grid-connected PV systems supplying pulse-load,” Sol. Energy, vol. 193, no. June, pp. 139–147, 2019, doi: 10.1016/j.solener.2019.09.018.

M. Traore et al., “Supervision of a PV system with storage connected to the power line and design of a battery protection system,” Wirel. Networks, 2018, doi: 10.1007/s11276-018-1886-x.

A. K. Tossa et al., “Artificial intelligence technique for estimating PV modules performance ratio under outdoor operating conditions,” J. Renew. Sustain. Energy, vol. 10, no. 5, 2018, doi: 10.1063/1.5042217.

D. Gueye et al., “Experimental Validation Under dSPACE of the ANN-PID Control of the DC Link for Injection of Solar Energy to the Grid,” Int. J. Renew. Energy Res., vol. 12, no. 4, pp. 2015–2022, 2022, doi: 10.20508/ijrer.v12i4.13391.g8562.

W. I. Hameed et al., “Prediction of solar irradiance based on artificial neural networks,” Inventions, vol. 4, no. 3, pp. 1–10, 2019, doi: 10.3390/inventions4030045.

I. R. L. Sonko, M. F. Mbaye, E. M. Ndiaye, M. Thiam, and M. Wade, “Influence of Meteorological Parameters on the Production of Grid- connected Solar Photovoltaic Plants in a Tropical Area : Case of Diass,” J. Sci. Eng. Res., vol. 8, no. 12, pp. 137–143, 2021.

A. B. B, A. Ndiaye, and S. Mbodji, “Supervision Strategy of a Hybrid System PV with Storage for Injection to the Electrical Network,” ICST Inst. Comput. Sci. Soc. Informatics Telecommun. Eng., vol. 1, pp. 134–145, 2020.

A. Ba, A. Ndiaye, E. H. M. Ndiaye, and S. Mbodji, “Power optimization of a photovoltaic system with artificial intelligence algorithms over two seasons in tropical area,” MethodsX, vol. 10, no. October 2021, p. 101959, 2023, doi: 10.1016/j.mex.2022.101959.

A. S. Ba, “Analyse de la politique d ’ efficacité énergétique du Sénégal,” 2018.

K. Amara, A. Fekik, D. Hocine, and M. Lamine, “Improved performance of a PV solar panel with Adaptive Neuro Fuzzy Inference System ANFIS based MPPT,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, vol. 5, pp. 1098–1101, 2018.

M. A. Abdoulaye, G. J. P. Tevi, D. Diouf, and A. S. Maiga, “Impact of the Intermittency of Photovoltaic Power Plants on the Frequency Management: Case of the Senegalese Electricity Grid,” J. Power Energy Eng., vol. 08, no. 07, pp. 55–70, 2020, doi: 10.4236/jpee.2020.87005.

M. de l’énergie et du Pétrole, “Rapport Annuel,” Senelec, pp. 20–25, 2017.

E. M. Ndiaye, A. Ndiaye, M. Faye, M. A. Tankari, and G. Lefebvre, “Adaptive Neuro-Fuzzy Inference System Application for The Identification of a Photovoltaic System and The Forecasting of Its Maximum Power Point,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, vol. 5, pp. 1–7, 2018.

D. Pattanaik, S. Mishra, G. P. Khuntia, R. Dash, and S. Chandra, “An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network,” pp. 630–641, 2020.

A. K. S. Al-sayyab, Z. Y. Al Tmari, and M. K. Taher, “Theoretical and experimental investigation of photovoltaic cell performance , with optimum tilted angle : Basra city case study,” Case Stud. Therm. Eng., vol. 14, no. September 2018, p. 100421, 2019.

W. J. Jamil, H. Abdul Rahman, S. Shaari, and Z. Salam, “Performance degradation of photovoltaic power system: Review on mitigation methods,” Renew. Sustain. Energy Rev., vol. 67, pp. 876–891, Jan. 2017, doi: 10.1016/j.rser.2016.09.072.

A. Ghosh and S. Neogi, “Impact of dust and other environmental factors on glass transmittance in warm and humid climatic zone,” Clean Technol. Environ. Policy, vol. 19, no. 4, pp. 1215–1221, 2017, doi: 10.1007/S10098-016-1302-0.

A. Ghosh, “Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power,” Challenges, vol. 11, no. 1, p. 9, May 2020, doi: 10.3390/CHALLE11010009.

E. Hadji, M. Ndiaye, A. Ndiaye, and M. Faye, “Photovoltaic power optimization based on artificial intelligence method,” Int. J. Innov. Sci. Eng. Technol., vol. 8, no. 5, pp. 519–533, 2021.

F. Chekired, Z. Smara, A. Mahrane, M. Chikh, and S. Berkane, “An energy flow management algorithm for a photovoltaic solar home,” Energy Procedia, vol. 111, no. September 2016, pp. 934–943, 2017, doi: 10.1016/j.egypro.2017.03.256.

A. Ndiaye, L. Thiaw, and G. Sow, “Application of new modeling and control for grid connected photovoltaic systems based on artificial intelligence,” J. Electr. Electron. Eng. Res., vol. 7, no. 1, pp. 1–10, 2015, doi: 10.5897/JEEER2013.0523.

S. I. Sulaiman, T. K. A. Rahman, I. Musirin, and S. Shaari, “An artificial immune-based hybrid multi-layer feedforward neural network for predicting grid-connected photovoltaic system output,” Energy Procedia, vol. 14, pp. 260–264, 2012, doi: 10.1016/j.egypro.2011.12.927.

B. Chen, P. Lin, Y. Lai, S. Cheng, Z. Chen, and L. Wu, “Very-Short-Term Power Prediction for PV Power Plants Using a Simple and E ff ective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets,” electronics, 2020.

A. Sharifian, M. J. Ghadi, S. Ghavidel, L. Li, and J. Zhang, “A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data,” Renew. Energy, vol. 120, pp. 220–230, 2018, doi: 10.1016/j.renene.2017.12.023.

S. Pelland, J. Remund, J. Kleissl, T. Oozeki, and K. De Brabandere, “Photovoltaic and Solar Forecasting : State of the Art,” p. 40, 2013.

W. Charles and L. Kamuyu, “Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs,” 2018, doi: 10.3390/en11020447.

A. Yona, T. Senjyu, T. Funabashi, P. Mandal, and C. Kim, “Decision Technique of Solar Radiation Prediction Applying Recurrent Neural Network for Short-Term Ahead Power Output of Photovoltaic System,” vol. 2013, no. September, pp. 32–38, 2013.

S. G. Kim, J. Y. Jung, and M. K. Sim, “A two-step approach to solar power generation prediction based on weather data using machine learning,” Sustainability, vol. 11, no. 5, 2019, doi: 10.3390/SU11051501.

K. R. Kumar and M. S. Kalavathi, “Artificial intelligence based forecast models for predicting solar power generation,” Mater. Today Proc., vol. 5, no. 1, pp. 796–802, 2018, doi: 10.1016/j.matpr.2017.11.149.

A. M. S. Aldobhani and R. John, “Maximum Power Point Tracking of PV System Using ANFIS Prediction and Fuzzy Logic Tracking,” Proc. Int. MultiConference Eng. Comput. Sci. 2008 Vol II IMECS 2008, 19-21 March, 2008, Hong Kong, vol. II, pp. 19–21, 2008.

A. A. Aldair, A. A. Obed, and A. F. Halihal, “Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system,” Renew. Sustain. Energy Rev., vol. 82, no. August 2017, pp. 2202–2217, 2018, doi: 10.1016/j.rser.2017.08.071.

S. Shabaan, M. I. A. El-sebah, and P. Bekhit, “Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system,” J. Electr. Syst. Inf. Technol., vol. 5, no. 1, pp. 11–22, 2018.

E. M. Ndiaye, M. Faye, and A. Ndiaye, “Comparative study between three methods for optimizing the power produced from photovoltaic generator,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 6, pp. 1458–1465, 2020, doi: 10.25046/aj0506175.

P. Mandal, S. T. S. Madhira, A. Ul haque, J. Meng, and R. L. Pineda, “Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques,” Procedia Comput. Sci., vol. 12, no. 915, pp. 332–337, 2012, doi: 10.1016/j.procs.2012.09.080.

A. Gligor, C. D. Dumitru, and H. S. Grif, “Artificial intelligence solution for managing a photovoltaic energy production unit,” Procedia Manuf., vol. 22, pp. 626–633, 2018, doi: 10.1016/j.promfg.2018.03.091.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, “An Experimental Estimation of Hybrid ANFIS-PSO-Based MPPT for PV Grid Integration under Fluctuating Sun Irradiance,” IEEE Syst. J., vol. 14, no. 1, pp. 1218–1229, 2020, doi: 10.1109/JSYST.2019.2949083.

A. Bassam, O. M. Tzuc, M. E. Soberanis, L. J. Ricalde, and B. Cruz, “Temperature estimation for photovoltaic array using an adaptive neuro fuzzy inference system,” Sustain., vol. 9, no. 8, 2017, doi: 10.3390/su9081399.

R. Pavan Kumar Naidu and S. Meikandasivam, “ICM based ANFIS MPPT controller for grid connected photovoltaic system,” Int. J. Eng. Technol., vol. 7, no. 3, pp. 1508–1513, 2018, doi: 10.14419/ijet.v7i3.13562.

W. M. Nkounga, M. F. Ndiaye, M. L. Ndiaye, O. Cisse, M. Bop, and A. Sioutas, “Short-term forecasting for solar irradiation based on the multi-layer neural network with the Levenberg-Marquardt algorithm and meteorological data: Application to the Gandon site in Senegal,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, vol. 5, pp. 869–874, 2018, doi: 10.1109/ICRERA.2018.8566850.

S. Sr, S. K. Sinha, and A. S. Pandey, “Short Term Solar Irradiation Forecasting using ANFIS and Simulated Annealing ANFIS,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 7, no. Xi, pp. 590–599, 2019.

S. Amirkhani, S. Nasirivatan, A. B. Kasaeian, and A. Hajinezhad, “ANN and ANFIS models to predict the performance of solar chimney power plants,” Renew. Energy, vol. 83, pp. 597–607, 2015, doi: 10.1016/j.renene.2015.04.072.

E. M. Ndiaye, A. Ndiaye, M. Faye, and S. Gueye, “Intelligent Control of a Photovoltaic Generator for Charging and Discharging Battery Using Adaptive Neuro-Fuzzy Inference System,” Int. J. Photoenergy, vol. 2020, 2020.

R. M. Kamel, A. Chaouachi, and K. Nagasaka, “Comparison the Performances of Three Earthing Systems for Micro-Grid Protection during the Grid Connected Mode,” Smart Grid Renew. Energy, no. August, pp. 206–215, 2011, doi: 10.4236/sgre.2011.23024.

Y. K. Semero, J. Zhang, D. Zheng, and S. Member, “PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy,” CSEE J. POWER ENERGY Syst., vol. 4, no. 2, pp. 210–218, 2018, doi: 10.17775/CSEEJPES.2016.01920.

M. E. Ikram, “Contribution à la modéisation et à l’optimisation de systèmes énergétiques multi-sources et multi-charges,” Thèse Dr. l’Universite Lorraine, 2016.

M. A. Ehyaei and M. A. Rosen, “Optimization of a triple cycle based on a solid oxide fuel cell and gas and steam cycles with a multiobjective genetic algorithm and energy, exergy and economic analyses,” Energy Convers. Manag., vol. 180, no. November 2018, pp. 689–708, 2019, doi: 10.1016/j.enconman.2018.11.023.

J. R. Jang, “ANFIS : Adaptive-Network-Based Fuzzy Inference System,” IEEE, vol. 23, no. 3, 1993.

A. Fallah, F. Zarei, H. Zarrabi, and M. J. Lariche, “ANFIS-GA modeling of dynamic viscosity of N- Alkane in different operational conditions,” Pet. Sci. Technol., vol. 0, pp. 1–7, 2018, doi: 10.1080/10916466.2018.1458117.

R. K. Kharb, F. Ansari, and S. L. Shimi, “Design and Implementation of ANFIS based MPPT Scheme with Open Loop Boost Converter for Solar PV Module,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 3, no. 1, pp. 6517–6524, 2014.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 El Hadji Mbaye Ndiaye