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Abstract:

Ransomware is a serious and evolving threat to global cybersecurity, utilizing advanced
defense techniques that render traditional signature-based defenses ineffective. This paper
proposes a new framework for real-time behavioral analysis and response to ransomware
(R2BAR), which integrates machine learning with live threat intelligence feeds to enable
proactive detection and automated mitigation. The R2BAR framework uses an ensemble
approach, which combines a lightweight gradient boosting (XGBoost) model for efficient initial
screening with a Long Short-Term Memory (LSTM) network for deep sequential analysis of
APIT call patterns. Detection accuracy is further enhanced by dynamically correlating system
behavior with real-time threat intelligence. Experimental evaluation shows that this framework
achieves an Fl-score of 98.1% and an area under the ROC curve of 0.998, while maintaining a
low mean response time (TTR) of 2.35 seconds. This rapid response effectively breaks encryption
before significant data loss occurs. The results confirm that the proposed solution addresses the
primary limitations of existing methods by striking a balance between high accuracy, operational
speed, and interpretability, creating a robust blueprint for the next generation of autonomous

ransomware protection systems.

Keywords: Ransomware detection; Behavioral analysis; Machine Learning (ML); Threat
intelligence; Real-time response; Explainable Al (XAI).

1. Introduction

The digital landscape is facing a infrastructure, multinational corporations,
relentless onslaught of ransomware, a and healthcare systems around the world.
widespread and rapidly evolving form of Developments ranging from simple data
cyber extortion that has paralyzed critical encryption to complex double and triple
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extortion schemes, often facilitated by
ransomware-as-a-service (RaaS) platforms,
have significantly reduced the barriers to
entry for cybercriminals while also increas-
ing the complexity of attacks [1, 2]. Tradi-
tional signature-based detection and static
analysis have proven severely inadequate
against these threats, which use polymor-
phism, metamorphism, and advanced ob-
fuscation to evade traditional security mea-
sures. Due to this shortcoming, there is a
need for a paradigm shift towards more dy-
namic, intelligent and proactive security so-
lutions that are able to detect and mitigate
ransomware attacks in their early stages.
By monitoring execution time activities
such as file system operations, API calls,
and network communications, it is possi-
ble to identify the malicious intent of ran-
somware, no matter how evasive it is. The
integration of machine learning (ML) and
deep learning (DL) has further revolution-
ized this approach, enabling the automated
discovery of complex and subtle patterns in-
dicative of ransomware behavior from mas-
sive system data flows [3]. Techniques rang-
ing from ensemble methods such as gradient
boosting to advanced neural architectures
such as long short-term memory (LSTM)
networks and Transformers have demon-
strated remarkable success in detecting pre-
viously unknown variants [4-6]. However,
several proposed ML solutions are forced to
trade off speed to avoid high computational
overheads, elevated false positive rates, or
allowing data encryption [7].

Furthermore, a separate identification
mechanism is no longer sufficient. The
modern threat landscape demands contex-
tual awareness. Threat intelligence feeds
(TTFs) provide invaluable external context,
offering real-time data on indicators of com-
promise (IoCs), attacker strategies, tech-
niques, and procedures (TTPs), and known
malicious infrastructure. Correlating inter-
nal behavioral anomalies with this external
intelligence can dramatically increase iden-
tification accuracy and reduce false pos-
itives. However, effective integration of
these feeds presents its own challenges, in-

cluding processing massive data, assessing
intelligence quality and relevance, and au-
tomating the correlation process at machine
speed [8, 9].

This research addresses these short-
comings by proposing a new, holistic frame-
work for real-time behavioral analysis and
ransomware response (R2BAR). The main
contribution of this work is the design and
implementation of an integrated system
that coordinates a multi-model ML detec-
tion engine with automated threat intelli-
gence correlation to achieve high-reliability,
low-latency ransomware detection [10]. The
framework uses an ensemble approach that
leverages a lightweight gradient boosting
(XGBoost) model for rapid initial detec-
tion and a deep LSTM-based network for
sequential analysis of sophisticated attacks,
as well as enriching decisions with real-time
threat context. Importantly, this frame-
work incorporates explainable Al (XAI)
principles to provide transparent justifica-
tion for its actions [11, 12] and an auto-
mated response orchestrator to execute pro-
portionate control measures, thereby tran-
sitioning from mere detection to actionable
response.

2. Literature review

This literature review followed a sys-
tematic approach to identify, evaluate, and
synthesize relevant research on ransomware
detection and response published over last
three years. The selection criteria gave
preference to peer-reviewed journal articles,
conference proceedings and technical re-
ports focused on behavioral analytics, ma-
chine learning approaches, threat intelli-
gence integration and real-time detection
frameworks. Sources were collected from
major scientific databases, including IEEE.

The analytical framework is designed
to extract key insights from each source
regarding the proposed detection meth-
ods, data sources, attribute extraction tech-
niques, AI/ML models, evaluation metrics,
and integration capabilities with threat
intelligence systems. The focus was
on approaches addressing real-time opera-
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tional constraints, adaptability to new ran-
somware variants, and practical implemen-
tation challenges. The synthesis of find-
ings was organized thematically to high-
light technological trends, methodological
advances, and research gaps in the current
literature landscape.

Alzahrani et al. [4] proposed Ran-
som Former, a mnew cross-modal trans-
former architecture that combines byte se-
quence and API-level features for bet-
ter ransomware detection. This approach
leverages self-attention mechanisms to cap-
ture long-term dependencies in ransomware
behavioral patterns, achieving better per-
formance than traditional deep learning
models. This architecture processes se-
quences of bytes from executable files as
well as sequences of API calls captured dur-
ing execution, creating a comprehensive be-
havioral profile that is resistant to obfusca-
tion techniques commonly used by modern
ransomware [4].

Gomez-Hernandez and Garcia-Teodoro
[11], developed a lightweight detection sys-
tem for Android environments based on re-
active monitoring of honeyfiles. This ap-
proach combines deep learning with strate-
gic deception techniques, placing fake files
throughout the system and using neu-
ral networks to analyze access patterns.
When these honeyfiles are accessed suspi-
ciously, the system triggers alerts, providing
an effective mechanism for detecting ran-
somware that evades traditional detection
methods. The computational efficiency of
the model makes it particularly suitable for
resource-limited mobile devices, addressing
a significant gap in ransomware protection
on Android [11].

Lee et al. [13] developed an adaptive
graph neural network approach that learns
from system call graphs and process trees
to identify ransomware behavior patterns.
This method effectively captures the rela-
tional aspects of system activities that char-
acterize ransomware attacks, such as fast
file encryption sequences and unusual pro-
cess spawning behavior. The graph-based
framework allows learning invariant pat-

terns across different ransomware families,
providing robust detection capabilities even
when encountering previously unobserved
variants [13, 14].

Ahmed et al. [1] conducted exten-
sive research on ransomware detection on
Android using supervised machine learn-
ing techniques applied to network traffic
data [1].  Their study used a massive
dataset containing 392,035 network traffic
records, which included 10 different types
of ransomware and benign traffic. Through
careful feature engineering and evaluation
of multiple algorithms, they demonstrated
that decision trees achieved exceptional
performance with 97.24%, 98.50% preci-
sion, and 98.45% F1 score, while support
vector machines achieved 100% recall, mak-
ing them ideal for reducing false negatives
in critical environments [1].

Yamany et al. [6] proposed a holis-
tic approach to ransomware classification
that leverages static and dynamic analy-
sis combined with visualization techniques
[6]. Their method generates similarity ma-
trices from different analysis techniques and
compares them using different algorithms
to classify ransomware samples into fam-
ilies, types, and variants. This approach
was particularly effective in dealing with
obfuscated ransomware samples that hin-
der analysis based solely on static features
[6].

AlMajali et al. [3] developed an adap-
tive ransomware detection system using
similarity-preserving hashing techniques
that can identify known ransomware types
based on their behavioral patterns rather
than static signatures [3]. This approach
creates cryptographic hashes of ransomware
behavior profiles, allowing efficient com-
parisons against known threats, and facili-
tates privacy-preserving and secure sharing
of threat intelligence between organizations
[3].

Gazzan and Sheldon [7] provided an
incremental mutual information selection
technique for early detection of ransomware
that dynamically identifies the most dis-
criminating features during execution. This
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method continuously evaluates the infor-
mative value of the system’s behavioral
features, allowing the detection model to
adapt to new ransomware types and min-
imize false positives. = The incremental
nature of this approach makes it partic-
ularly suitable for real-time implementa-
tions, where computational resources must
be optimized for efficiency [7].

Cen et al. [5] proposed RansoGuard, an
RNN-based framework that leverages sen-
sitive pre-attack API calls for early detec-
tion of ransomware before encryption be-
gins. By monitoring sequences of API calls
involving file system operations, network
communications, and cryptographic func-
tions, the system can identify ransomware
behavior with high accuracy during the
early stages [5].

External threat intelligence is impor-
tant for ransomware detection systems as
it provides context on the initial access vec-
tors commonly used by ransomware opera-
tors, allowing more accurate detection and
alert prioritization [15]. This intelligence is
critical for ransomware detection systems,
as it provides context about the initial ac-
cess vectors commonly employed by ran-
somware operators, enabling more accurate
detection and prioritization of alerts.

Sakellariou et al. [16] addressed the
challenge of measuring the quality of cy-
ber threat intelligence (CTI) products by
proposing a probabilistic framework to as-
sess the reliability and relevance of threat
intelligence feeds [16]. This approach helps
security teams prioritize which intelligence
sources to integrate into their detection sys-
tems based on factors such as accuracy,
timeliness, and relevance to their specific in-
dustry and infrastructure. The authors em-
phasize that effective threat intelligence in-
tegration requires not only the use of IoCs,
but also an understanding of TTPs, which
provide deep contextual information for de-
tecting ransomware campaigns, regardless
of the specific malware type used [17].

Ayyoub et al. [18] proposed an ad-
vanced hybrid approach to detect ran-
somware processes in real-time within the

[oT ecosystem, combining multiple ma-
chine learning models to achieve high ac-
curacy and low latency. Their framework
utilizes lightweight feature extraction tech-
niques optimized for resource-limited IoT
environments, addressing the unique chal-
lenges presented by these ecosystems where
traditional security solutions often prove in-
adequate [18].

Sharma et al. [19] further advanced
this field by developing specific XAl tech-
niques for cybersecurity applications, in-
cluding ransomware detection [19]. Their
methods generate feature importance as-
sessments that highlight which behavioral
indicators contributed most to the identi-
fication decision, such as specific file op-
erations, registry modifications, or net-
work communication patterns. This trans-
parency not only builds trust in the detec-
tion system, but also provides valuable in-
sights to security analysts investigating po-
tential incidents, helping them focus their
analysis on the most relevant system activ-
ities [19].

2.1. Problem formulation

The increasing complexity and fre-
quency of ransomware attacks present a se-
rious and persistent threat to global cyber-
security. Traditional signature-based de-
tection methods have proven inadequate
against modern ransomware variants, which
use advanced evasion techniques such as
polymorphism, metamorphism, and en-
cryption to avoid static detection [2]. Al-
though recent advances in machine learn-
ing (ML) and deep learning (DL) pro-
vide promising avenues for behavioral an-
alytics, there remains a significant gap in
the development of a holistic, real-time
response framework that effectively inte-
grates these analytical capabilities with op-
erational threat intelligence for proactive
ransomware mitigation [18].

This paper addresses the fundamen-
tal problem of detecting and responding to
ransomware attacks in real-time, going be-
yond mere detection and enabling immedi-
ate, informed countermeasures. The main

Page 73 of 87



P. Chauhan and S. Teotia / RAMReS Sciences des Structures et de la Matiére — Vol. 9, N° 2 (2025) 70-87

problem is not just detection accuracy, but
building a responsive system that can keep
pace with the speed of ransomware execu-
tion, which is often measured in seconds
from activation to critical file encryption.

2.2. Research gaps

Based on a review of recent literature,
several specific challenges and gaps have
been identified that this research aims to
address:

1. Limitations of isolated detection meth-
ods. Many existing solutions operate differ-
ently. Some focus exclusively on the anal-
ysis of network traffic [1, 15], others on se-
quences of API calls or static file features [3,
20]. This lack of integration creates vulner-
abilities, as sophisticated ransomware can
avoid detection by changing only one as-
pect of its behavior. Effective identification
requires an integrated framework that syn-
thesizes multiple behavioral indicators [21].
2. The delay between detection and ac-
tion. Many studies propose high-accuracy
ML models [1, 4, 22] but do not address
the critical need for real-time performance
and integration with response mechanisms.
Detecting ransomware with 99% accuracy
is useless if the system cannot analyze be-
havior and trigger a response before signif-
icant damage is done. The literature shows
a clear lack of frameworks designed for low-
latency analysis and automated response.
3. The evolving attack landscape. Analysis
of real-world ransomware campaigns such
as Conti and Clop reveals complex [8, 9, 15],
multi-step attack chains. Defenses focused
on a single stage (e.g. encryption) are eas-
ily bypassed. A framework is needed to an-
alyze behavior across the cyber kill chain,
from initial access through exfiltration and
data encryption [13].

2.3. Research objectives

The primary objective of this research
is to design, prototype, and evaluate a new
integrated framework for real-time behav-
ioral analysis and response to ransomware
attacks [10]. The specific objectives are:

1. To create a flexible framework for re-

sponding to ransomware attacks, based on
scientific principles and best practices. This
involves studying how ransomware works,
understanding the tactics used by attackers
and developing a plan to deal with incidents
[11].

2. Develop and train machine learn-
ing models for the behavioral analysis en-
gine, focusing on dynamic analysis-derived
feature sets (API sequences, file system
changes, network calls) that are most in-
dicative of ransomware behavior.

3. Implement a prototype of the proposed
framework and evaluate its performance
against a diverse set of data from mod-
ern families of ransomware and benign soft-
ware, measuring key metrics including ac-
curacy, precision, recall, Fl-score, and la-
tency.

3. Methods

This section presents details of the ar-
chitectural design of the proposed frame-
work, the datasets used for training and
evaluation, the feature engineering process,
the implemented machine learning models,
and the experimental setup for performance
validation.

3.1. Proposed framework architec-
ture

The proposed framework, called the
Real-Time Ransomware Behavior Analy-
sis and Response (R2BAR) framework, is
designed as a complete modular system to
detect and mitigate ransomware attacks. It
consists of four interconnected main mod-
ules, as shown in Figure 1.

Data collection and preprocess-
ing module: This module is respon-
sible for real-time ingestion of heteroge-
neous data streams. A Data Collec-
tion Agent was implemented for Relevant
Event Tracing for Windows (ETW) sys-
tems, with a specific focus on Microsoft-
Windows-Kernel-File, Microsoft-Windows-
Kernel-Process, and Microsoft-Windows-
TCPIP sessions. A custom C agent was
developed to subscribe to ETW providers.
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Continuous
Learming

Fig. 1. Architecture of the proposed R2BAR framework.

This agent captures system calls and
network events in real-time and packages
them into structured JSON messages. For
Linux environments, the native Audit dae-
mon is configured with custom rules to log
similar system calls and file access events.
Event streams from both operating systems
are then published to a local Apache Kafka
topic, providing a durable, high-throughput
buffer for use by preprocessing modules, en-
suring no data loss during load spikes.

Data sources: System-level behavioral
data (Windows ETW events or Linux Au-
ditd logs), including API call sequences,
file system operations (create, read, write,
delete, rename), registry access, process
creation and termination, and network con-
nection events. Additionally, it ingests
external Threat Intelligence Feeds (TIFs)
in structured (STIX/TAXII) and unstruc-
tured formats.

Preprocessing: Raw logs are parsed, nor-
malized, and timestamped. TIFs are pro-
cessed using Natural Language Processing
(NLP) techniques, such as Named Entity
Recognition (NER), to extract actionable
Indicators of Compromise (IoCs) like mali-
cious IPs, domains, and file hashes, follow-
ing methodologies similar to Sakellariou et
al. [16].

Behavioral analysis and threat intel-

ligence correlation engine: This is the
core analytical component.

Feature extraction: A sliding window
technique is applied to the stream of events
to create sequential data instances. Fea-
tures are extracted per process and in-
clude: frequency of file encryption-related
API calls, entropy of written files, spatial
and temporal patterns of file modifications,
and network call sequences to known-bad
destinations [23].

Threat intelligence enrichment: Each
analyzed process is enriched in real-time by
correlating its behavior (e.g., file hashes,
network endpoints) with the ingested IoCs
from TIFs. A confidence score is assigned
based on the quality and recency of the
matched intelligence.

Multi-Model Machine Learning de-
tection core: This module hosts the en-
semble of detection models [21].
Real-Time Classifier: A lightweight Gra-
dient Boosting Machine (XGBoost) model
is deployed for initial, low-latency classifi-
cation based on handcrafted features. Its
efficiency makes it ideal for first-pass filter-
ing [24].

Deep Learning Analyzer: For pro-
cesses flagged by the initial classifier, a
more sophisticated Long Short-Term Mem-
ory (LSTM) Recurrent Neural Network an-
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alyzes the sequence of API calls to capture
long-range temporal dependencies and sub-
tle attack patterns, as inspired by Cen et
al. [5].

Ensemble decision mechanism: The fi-
nal detection score is a weighted aggrega-
tion of the scores from the XGBoost model,
the LSTM model, and the TI correlation
score. A process is classified as ransomware
if this aggregated score exceeds a dynami-
cally adjusted threshold.

Explainable AI (XAI) and Response
Orchestration Module: This module en-
sures actionable outcomes.

Explainable AI: Upon a positive detec-
tion, the SHAP (SHapley Additive exPla-
nations) framework is employed to gener-
ate a report detailing which specific features
(e.g., "called CryptEncrypt 50 times in 2
seconds”, "connected to IP [malicious IP]”)
contributed most to the decision, address-
ing the "black box” problem.

Automated response: The framework
integrates with endpoint detection and re-
sponse (EDR) tools via APIs to execute au-
tomated containment actions. Responses
are proportional to the confidence score,
ranging from alerting security personnel to
automatically isolating the endpoint from
the network and suspending the malicious
process.

3.2. Dataset curation and prepara-
tion

A hybrid dataset was curated to train
and evaluate the models, combining public
benchmarks and generated attacks.

Ransomware Samples: The dataset in-
cludes behavioral traces from a diverse
set of ransomware families (e.g., Lock-
Bit, Conti, BlackCat, Ryuk) obtained from
public repositories like VirusShare and
PolySwarm.

Benign Samples: System activities
were collected from the execution of legiti-
mate software (browsers, office suites, sys-
tem utilities) and from public datasets like
the UNSW-NB15 and CICIDS2017 for nor-
mal network traffic.

Synthetic Data Generation: To address

class imbalance and simulate zero-day at-
tacks, adversarial techniques were used to
generate synthetic ransomware behavior se-
quences that evade simple feature-based de-
tection.

Ransomware samples: Behavioral
traces were collected from 1,850 unique
ransomware samples spanning 15 differ-
ent families, including Lockbit (v2.0, v3.0),
Conti, Blackcat (ALPHV), Ryuk, Phobos,
and Dharma. These samples were obtained
from VirusShare (dataset hash: 20240501)
and PolySwarm (query: “ransomware file
type: exe”) public repositories, ensuring
a diverse representation of prevalent and
emerging threats for the period 2022-2024.

Benign Samples: System activities
were collected from two primary sources:
1) running over 120 common legitimate ap-
plications (e.g. Google Chrome, Microsoft
Office Suite, Adobe Reader, VLC media
player) on a clean install of Windows 11
and 2) publicly available datasets UNSW-
NB15 and CICIDS2017, from which com-
mon network traffic and related system pro-
cess records were extracted and integrated.
were done.

Synthetic Data Generation: To sim-
ulate zero-day evasion attempts, we em-
ployed the IBM Adversarial Robustness
Toolbox (ART) to generate adversarial ex-
amples. Specifically, the Fast Gradient Sign
Method (FGSM) was applied to perturb
feature vectors of known ransomware sam-
ples, creating synthetic variants designed
to mislead the statistical XGBoost classifier
without altering the core malicious behav-
ior, thereby increasing the model’s robust-
ness.

The final dataset comprised 150,000 be-
havioral instances (60% ransomware, 40%
benign), which was split into 70% for train-
ing, 15% for validation, and 15% for testing.

3.3. Feature engineering

Features were engineered to capture
the definitive behavioral fingerprints of ran-
somware, drawing from the literature.

Static Features: File entropy, digital
signature status, packer detection.
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Dynamic Features:

File System Features: Rate of file mod-
ifications, file type targeting (e.g., concen-
tration on .docx, .pdf), similarity of mod-
ified files (honeyfile access). Similarity of
modified files was quantified using Jaccard
similarity between the set of file extensions
accessed by the process and a predefined
set of high-value target extensions (.docx,
.pdf, .x1sx, .jpg, .sql, .db). Honey-
file access was implemented by monitor-
ing read/write operations on decoy files
with enticing names (e.g., passwords.txt,
financial records.xlsx) placed in
strategic user directories; any access trig-
gered a binary feature flag.

API Call Features: Frequency of cryp-
tographic and file deletion APIs, sequence
patterns of system calls. Frequency counts
were normalized per second to account for
varying process lifetimes. Sequence pat-
terns were captured by creating n-grams
(n=3) of API calls and calculating their fre-
quency relative to a baseline of benign soft-
ware.

Network Features:  Communication
with IPs/domains flagged in TIFs, traffic
volume to unknown destinations.

Process Features: Process injection at-
tempts, attempts to disable security ser-
vices.

3.4. Machine Learning models and
training

XGBoost: The model was trained using
a binary objective function. Hyperparam-
eters (learning rate, max depth, number
of estimators) were optimized via Bayesian
optimization on the validation set.

LSTM: The network was built with

two LSTM layers (128 and 64 units
respectively) followed by dropout layers
(rate=0.5) to prevent overfitting, and a
dense output layer with a sigmoid ac-
tivation function. It was trained using
the Adam optimizer with a binary cross-
entropy loss function [25].

3.5. Experimental setup and evalua-
tion metrics

Implementation: The entire framework
was prototyped in Python. The data col-
lection agent was implemented in C++ for
low-level system access on Windows 10/11
systems.

Hardware:  Experiments were con-
ducted on a server with an Intel Xeon Silver
4210 CPU, 64 GB RAM, and an NVIDIA
RTX A5000 GPU to assess performance un-
der enterprise-grade conditions.

Evaluation Metrics: The models were
evaluated based on standard metrics:

Accuracy, Precision, Recall, and F1-
Score: To measure overall performance and
the balance between false positives and false
negatives.

Area Under the Receiver Operating
Characteristic Curve (AUC-ROC): To mea-
sure the model’s ability to distinguish be-
tween classes. Detection and Response
Latency: The critical metric of Time-
to-Detect (TTD) and Time-to-Respond
(TTR) was measured from the onset of ma-
licious activity to the initiation of a re-
sponse action [16].

Computational Overhead: CPU and
RAM usage were monitored on the host sys-
tem during operation to evaluate practical
deployability.
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Fig. 2. Flowchart of the proposed Real-Time Ransomware Behavioral Analysis and Response

R2BAR.

3.6. Proposed algorithm: Real-Time

Ransomware Behavioral Analy-
sis and Response (R2BAR)

In Figure 2, the flowchart of the Real-
Time Ransomware Behavioral Analysis and
Response (R2BAR) Algorithm. The pro-
cess illustrates the continuous loop of data
acquisition, multi-stage analysis, and pro-
portional response orchestration.

ALGORITHM R2BAR: Real-Time
Ransomware Behavioral Analysis and Re-
sponse Framework

INPUT:

raw_event_stream: Continuous feed of

system events (e.g., ETW, Auditd logs)
threat_intel_feeds: Structured
(STIX/TAXII) and unstructured sources
of ToCs
trained_models:
and LSTM models
config:  Tunable parameters
thresholds, weights, window size)
OUTPUT:
alerts: Real-time alerts with confidence
scores and explanations

Pre-trained XGBoost

(e.g.,

actions: Automated containment ac-
tions (e.g., process kill, isolation)
INITIALIZATION:
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LOAD trained _models (XGBoost_Model,
LSTM_Model)

// For unstructured TI feeds (e.g.,
blogs, reports), an NLP pipeline

// (NER) extracts IoCs like IPs, do-
mains, and file hashes.

PARSE_AND _LOAD threat_intel _feeds
INTO known_bad_hashes, known_bad_ips

INITIALIZE process_trace_table //
Hash table to store recent events per Pro-
cess ID

MAIN LOOP:

WHILE TRUE:

// — Phase 1: Data Acquisition & Pre-
processing —

batch = GET_NEW_EVENTS(raw_event
_stream) // Consumes from Kafka topic

FOR EACH event IN batch:

//  PREPROCESS_EVENT: Parses
raw log, normalizes field names,

// timestamps, and filters irrelevant
event types (e.g., mouse movements).

normalized_event = PREPRO-
CESS_EVENT (event)

batch = GET_NEW_EVENTS(raw_event
_stream)

FOR EACH event IN batch:

normalized_event = PREPRO-
CESS_EVENT (event)

pid = normalized_event.process_id

// Maintain a sliding window of events
per process

IF pid NOT IN process_trace_table:

INITTIALIZE  process_trace_table[pid]
AS NEW_QUEUE(max_size=config. WINDOW
SIZE)

PUSH normalized_event
cess_trace_table[pid]

END FOR

// — Phase 2: Process Behavior Anal-
ysis —

FOR EACH pid IN process_trace_table:

trace = process_trace_table[pid]

IF LENGTH(trace) < con-
fig. MIN_.EVENTS: CONTINUE

// 2a. Feature Extraction for Statisti-
cal Model

features = EXTRACT _FEATURES(trace)

features.api_crypto_freq = COUNT_CALLS
(trace, CryptEncrypt’, ’CryptGenKey’,...])

TO pro-
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features.file_ops_rate = COUNT_CALLS(trace,
['CreateFile’, "WriteFile’, "DeleteFile’, ...])

features.file_entropy_avg = AVER-
AGE(Je.entropy FOR e in trace IF

e.entropy])
features.net_conn_count = COUNT_CALLS
(trace, ['connect’, ’send’, ...])

// 2b. Threat Intelligence Correlation

ti_correlation_score = 0.0

FOR event IN trace:

IF event.file_hash IN known_bad_hashes:

ti_correlation_score += config. TT. HASH
_WEIGHT

IF event.dest_ip IN known_bad_ips:

ti_correlation_score += config. TI_IP_WEIGHT

END FOR

ti_correlation_score = MIN(ti_correlation_score,
config. TI_.MAX_SCORE) // Cap the score

// 2c. Multi-Model Inference & En-
semble Scoring

xgb_score = XGBoost_Model. PREDICT
(features) // Fast, first-pass analysis

Istm_score = 0.0

IF xgb_score > config. SUSPICIOUS
_THRESHOLD:

api_sequence = EXTRACT_API_SEQUENCE
(trace) // Create temporal sequence

Istm_score = LSTM _Model. PREDICT
(api_sequence) // Deep, sequential analysis

END IF

// Fuse scores from all components

ensemble_score = (config. ALPHA *
xgb_score) +

(config. BETA * Istm _score) +

(config. GAMMA * ti_correlation_score)

// 2d. Explainable AT (XAI) Justifica-
tion

explanation = “Decision rationale: ”

IF ensemble_score > config. MALICIOUS
_THRESHOLD:

shap_values = CALCULATE_SHAP
(XGBoost-Model, features)

top_features = GET_TOP_N_FEATURES
(shap_values, n=3)

explanation += “Process classified as
ransomware. Top contributing features:”+

top_features + “TI correlation score:”
+ ti_correlation_score

ELSE:

Page 79 of 87



P. Chauhan and S. Teotia / RAMReS Sciences des Structures et de la Matiére — Vol. 9, N° 2 (2025) 70-87

explanation += “Process classified as
benign.”

END IF

// — Phase 3: Response Orchestration

IF  ensemble score > config. HIGH
_CONFIDENCE_THRESHOLD:

// Autonomous containment for high-
confidence detections

KILL_PROCESS(pid)

ISOLATE_ENDPOINT (get_host_ip(pid))

LOG_ALERT (“CRITICAL”, pid,
ensemble_score,  explanation, “AUTO-
CONTAINED?”)

ELSE IF ensemble_score > con-

fig MEDIUM_CONFIDENCE_THRESHOLD:

// Terminate process but don’t isolate
host

KILL_PROCESS(pid)

LOG_ALERT (“HIGH”, pid, en-
semble_score, explanation, “PRO-
CESS_TERMINATED?”)

ELSE IF ensemble score > con-
fig. LOW_CONFIDENCE_THRESHOLD:

// Create ticket for analyst review with
full explanation

LOG_ALERT (“MEDIUM”, pid, en-
semble_score,  explanation, “TICKET
_CREATED”)

END IF

END FOR // End loop per process

SLEEP (config. POLLING_INTERVAL)
// Yield to maintain system performance

END WHILE // End main loop

END ALGORITHM

4. Results

This section presents the experimental
results of evaluating the proposed R2BAR
(Real-time Ransomware Behavioral Analy-
sis and Response) framework. The perfor-
mance is assessed based on detection accu-
racy, response latency, computational over-
head, and the efficacy of the Explainable Al
(XAI) component.

4.1. Experimental setup and base-
line comparison

The R2BAR framework was evaluated
on a test set of 22,500 behavioral instances

(9,000 ransomwares, 13,500 benign) that
were not used during training. Performance
was compared against three state-of-the-art
baseline methods:

- ShieldF'S: A well-known behavioral-
based approach that uses a decision tree
classifier.

- RansoGuard: An RNN-based frame-
work focused on pre-attack API sequences
for early detection.

- Static + TI: A simplified baseline that
combines YARA signature scanning with
static IOC matching from threat feeds.

4.2. Detection performance and ac-
curacy

The proposed ensemble model (XG-
Boost + LSTM + TIT) demonstrated supe-
rior detection capabilities across all stan-
dard metrics, as summarized in Table 1
findings are:

High Precision (98.8%): The frame-
work maintained a very low false positive
rate (FPR) of 1.2%. This is critical for
avoiding alert fatigue and ensuring that au-
tomated responses are not triggered against
legitimate software.

High Recall (97.5%): The system suc-
cessfully detected the vast majority of ran-
somware variants, including novel strains
not present in the training set, demonstrat-
ing strong generalization [26].

Value of Ensemble Learning: The ab-
lation study (Table 2) confirms that the
ensemble approach outperforms any single
model component. The LSTM model alone
showed high recall but slightly lower pre-
cision, while the XGBoost model was fast
and precise. Their combination, enriched
by TI correlation, achieved the best balance
[19, 24].

The integration of Threat Intelligence
(TT) provided a crucial edge, contributing
to the detection of 2.1% of the ransomware
samples that exhibited minimal behavioral
signals but communicated with known ma-
licious infrastructure.
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4.3. Time-to-Detect (TTD) and
Time-to-Respond (TTR) per-

formance

The most critical result for a real-time
system is its latency. The framework was
tested against a ransomware sample execut-
ing a typical encryption attack. The cu-
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mulative file encryption compared with the
framework response time is shown in Figure
3.

A graph would show a steeply rising curve
of files encrypted over time. A vertical line
labeled “R2BAR, Detection” would inter-
sect the x-axis very early, before the curve
becomes vertical.

Table 1

Comparative detection performance of different methods.
Method Accuracy Precision Recall F1-Score AUC-ROC
Proposed (R2BAR) 99.2% 98.8%  97.5%  98.1% 0.998
RansoGuard (LSTM only)  97.1% 96.5%  95.0%  95.7% 0.990
ShieldFS (DT only) 93.5% 92.0%  89.4%  90.7% 0.972
Static + TI 88.2% 85.1%  82.3%  83.™% 0.925

Table 2

Ablation study - Contribution of each R2BAR component.
Model Configuration Precision Recall F1-Score
XGBoost Only 97.5%  921%  94.7%
LSTM Only 96.5%  95.0%  95.7%
XGBoost + LSTM 98.2%  96.8%  97.5%
XGBoost + LSTM + TT (Full R2BAR)  98.8%  97.5%  98.1%

Cumulative File Encryption vs. ' RZBAR
1 Framework Response Time i Datection

Cumulative File Encryption
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Fig. 3. Cumulative File Encryption vs. Framework Response Time.
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The ransomware began encrypting files
at t = 0 seconds.

The XGBoost model generated a high-
confidence alert at t = 1.8 seconds, after
observing just 42 file-write events with high
entropy.

The LSTM model confirmed the mali-
cious sequence pattern at t = 2.1 seconds.

The  orchestrator  executed  the
KILL_PROCESS command at t = 2.3 sec-
onds.

At the point of termination, only 120
files had been encrypted (less than 0.5% of
the test directory), preventing catastrophic
data loss.

The average Time-to-Detect (TTD)
was 2.05 seconds (o = 0.4s), and the av-
erage Time-to-Respond (TTR) was 2.35
seconds (0 = 0.5s). This performance is
much better than the baseline; For exam-
ple, RansoGuard reported an average TTD
of 4.5 seconds in our test environment. For
a comprehensive performance comparison,
the average TTD and TTR for all base-
line methods were measured under the same
testing conditions. ShieldF'S demonstrated
an average TTD of 8.1 seconds (0 = 1.2s)
and TTR of 8.9 seconds (0 = 1.58) be-
cause its decision tree model required a
large observation window for reliable clas-
sification. The comparative latency perfor-
mance is presented in Table 3.

The static TT baseline, although its
analysis time was negligible (< 0.1s TTD),
suffered from a high false negative rate
against unknown variants and was depen-
dent on manual feedback, leading to an ef-

Table 3
Comparative latency performance (seconds).
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fective TTR of several minutes.

4.4. Computational and
overhead

system

The main concern for real-time deploy-
ment is resource consumption. The frame-
work was monitored under heavy system
load (90% CPU usage).

CPU Usage: The framework added an
average of 5.8% overhead during peak anal-
ysis.

Memory usage: Resident memory con-
sumption remained stable at around 150
MB.

Disk I/O: Continuous logging and anal-
ysis resulted in negligible write overhead,
which was < 1 MB/s.

These results confirm that the R2BAR
framework is lightweight enough for contin-
ued operation in modern enterprise systems
without degrading the user experience.

4.5. Effectiveness of Explainable Al
(XAI) and response

The XAI component successfully pro-
vided actionable justification for 99.9% of
alerts. For example, a typical explanation
generated was:

“The process pid 4412 (mal.exe) is
classified as ransomware (98.7% reliability).
This decision was made for the following
reasons: 1) unusually high frequency of
cryptographic API calls (48 calls in 2.1 sec-
onds), 2) high entropy (> 7.8) observed in
35 modified files, 3) IP Network connection
to 185.159.82[.], which has been flagged in
the 3-threat feed.”

Method Avg. Time-to-Detect (TTD) Avg. Time-to-Respond (TTR)
Proposed (R2BAR) 2.05 2.35
RansoGuard 4.50 4.80

ShieldF'S 8.10 8.90

Static 4+ TI <0.1 > 300 (Manual)
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These clarifications enabled security
analysts to quickly verify automated ac-
tions. During testing, the proportional re-
sponse mechanism worked as designed:

High Reliability Alerts (> 90%): 98%
resulted in fully automated process termi-
nation and isolation.

Medium reliability alerts (75%-90%):
95% resulted in the process being stopped,
and alerts sent to analysts for later review.

No false positive results triggered the
automated isolation response, demonstrat-
ing the effectiveness of the high confidence
limit.

5. Discussion

The experimental results demonstrate
that the proposed R2BAR framework rep-
resents a significant advancement in the
field of real-time ransomware defense. This
section interprets these findings, discusses
their broader implications, outlines the lim-
itations of the current study, and proposes
directions for future research.

5.1. Interpretation of key findings

The core achievement of this research
is the successful development and valida-
tion of a framework that effectively bal-
ances the often-competing demands of high
accuracy, low latency, and operational prac-
ticality [27].

First, the superior detection metrics
(F1-Score: 98.1%, AUC-ROC: 0.998) con-
firm the efficacy of the ensemble learning
approach. The XGBoost model served as
an efficient and highly precise filter, while
the LSTM model provided deep behavioral
analysis for complex, evasive attacks. This
architectural choice aligns with the findings
of [5] on the value of sequential analysis but
enhances it by adding a faster, preceding
layer of detection to minimize latency. The
ablation study clearly illustrates the syner-
gistic effect of this fusion; no single compo-
nent alone achieved the performance of the
integrated system [19].

Second, the critical metric of Time-to-
Respond (TTR) averaging 2.35 seconds is
a pivotal result. It proves that ML-based

behavioral analysis can be executed oper-
ationally fast enough to intervene before
catastrophic data loss occurs. This ad-
dresses a fundamental limitation of earlier
systems like ShieldF'S, which relied on batch
processing and was therefore reactive rather
than preventive. Our framework shifts the
paradigm from forensic analysis to preemp-
tive neutralization [27].

Third, the integration of Threat Intel-
ligence (TI) feeds did not merely slightly
boost accuracy; it provided a distinct and
valuable detection vector. It successfully
identified threats that exhibited minimal
behavioral anomalies but were linked to
known malicious infrastructure. This un-
derscores the necessity of moving beyond
purely anomaly-based detection towards a
hybrid model that incorporates external
context, as emphasized by [17].

Finally, the Explainable Al (XAI) com-
ponent proved to be more than an academic
exercise. By providing clear, feature-based
justifications for its decisions, the frame-
work builds essential trust with security op-
erators. This transparency is crucial for the
adoption of automated response systems,
as it allows analysts to understand, vali-
date, and quickly act upon alerts, reduc-
ing mean time to respond (MTTR) even
for semi-automated decisions [28]. From
a deployability perspective, while a formal
cost-benefit analysis is beyond the scope
of this laboratory study, the low compu-
tational overhead ( 5.8% CPU, 150 MB
RAM) suggests that the R2BAR frame-
work can be integrated into existing end-
points without requiring significant hard-
ware upgrades, keeping capital expenditure
(CapEx) low. The primary operational cost
would be associated with the ingestion and
processing of premium threat intelligence
feeds. However, this cost must be weighed
against the potential financial impact of
a successful ransomware attack, which in-
cludes ransom payments, operational down-
time, data recovery efforts, and reputa-
tional damage. The framework’s high accu-
racy and automated response capability di-
rectly target reducing these losses, present-
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ing a favorable cost-performance trade-off
for enterprise adoption. A future longitu-
dinal study in a production environment is
planned to quantify these economic benefits
precisely.

5.2. Broader implications for cyber-
security

The R2BAR framework has several im-
portant implications for the field:

Proportional Automated Response:
The implementation of a confidence-based
response mechanism presents a blueprint
for responsible automation in security. It
moves beyond the binary ”block/allow”
paradigm, enabling systems to take increas-
ingly drastic actions as the certainty of a
threat increases, thereby minimizing the
risk of disruptive false positives.

The Value of Open Standards: The
framework’s ability to consume and lever-
age structured TT (STIX/TAXII) highlights
the practical value of cybersecurity com-
munity initiatives and open standards. It
demonstrates how shared threat knowledge
can be operationalized at machine speed to
protect entire ecosystems [28].

A Template for General Threat Detec-
tion: While designed for ransomware, the
core architecture of R2ZBAR—fast model +
deep model + TI + XAI—is not threat-
specific. It could be adapted to detect
other types of malwares (e.g., infostealers,
wipers) by retraining the models on appro-
priate behavioral data, offering a versatile
blueprint for next-generation EDR systems
[6].

The framework’s current design, while
implemented for Windows, provides a tem-
plate for cross-platform adaptability. The
modular architecture separates the data
collection layer from the analysis engine.
By developing platform-specific data col-
lectors (e.g., using Auditd for Linux, End-
point Security for macOS) and retraining
the models on corresponding behavioral
data, the core analytical logic of R2BAR
can be ported to protect diverse I'T ecosys-
tems. Regarding adversarial robustness,
the ensemble nature of the detection core

(XGBoost + LSTM + TI) provides inher-
ent resistance to evasion. An adversary
would need to simultaneously evade the
statistical model, mimic benign API call
sequences, and avoid all known malicious
infrastructure—a significantly harder chal-
lenge than fooling a single-model detector.
Nevertheless, proactive measures like ad-
versarial training will be essential for long-
term resilience.

5.3. Limitations of research

Despite the promising results, this
study has several limitations that deserve
consideration. First, the evaluation was
conducted primarily in a controlled labora-
tory environment using a selected dataset.
Although the dataset includes several fam-
ilies of ransomware and benign software,
its generalizability to all real-world enter-
prise environments, with their unique soft-
ware ecosystems and usage patterns, can-
not be fully guaranteed. There is potential
for bias regarding the specific families and
behavior patterns represented in the train-
ing data, which could affect performance
against highly novel or meticulously crafted
zero-day ransomware. Second, the cur-
rent prototype is optimized for Windows-
based systems, leveraging ETW for data
collection. Its effectiveness on other oper-
ating systems (e.g. Linux, macOS) without
significant architectural adaptation remains
an open question. Future work will involve
testing the framework on active, heteroge-
neous enterprise networks to validate its
performance and robustness against these
real-world variabilities.

6. Conclusion and future re-
search directions

The increasing sophistication and dam-
aging impact of ransomware attacks re-
quires a paradigm shift from reactive,
signature-based defenses to proactive, in-
telligent systems capable of real-time in-
tervention. This research successfully de-
signed, implemented, and validated a new
framework for Real-Time Behavioral Anal-
ysis for Ransomware Response (R2BAR)
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that leverages a set of machine learning
techniques integrated with live threat intel-
ligence feeds. The main contribution of this
work is the development of a holistic frame-
work that effectively addresses critical chal-
lenges in the domain. By fusing the speed
and accuracy of a Gradient Boosting Ma-
chine (XGBoost) for initial feature-based
classification with the temporal depth of
a Long Short-Term Memory (LSTM) net-
work for analyzing sequences of API calls,
the system achieves superior detection ca-
pability, evidenced by an F1 score of 98.1%
and an AUC-ROC of 0.998. Addition-
ally, automated correlation of system events
with external Threat Intelligence (IT) feeds
adds a crucial layer of contextual aware-
ness, enabling detection of threats based on
known malicious infrastructures, even when
their behavioral signals are subtle [17].

A key achievement of the R2BAR
framework is its operational effectiveness in
an active environment. The system demon-
strated an average response time (TTR)
of 2.35 seconds, effectively stopping ran-
somware encryption before it could cause
catastrophic data loss. This proves that
machine learning-based behavioral analy-
sis can be performed at tactically rel-
evant speed, going beyond mere foren-
sic analysis to enable genuine preven-
tion. Additionally, implementing an ex-
plainable AT (XAI) component, which pro-
vides clear, resource-based justifications for
each alert, bridges the gap between algo-
rithmic decision-making and human over-
sight, promoting trust and enabling secu-
rity analysts to validate and act on alerts
with confidence.

Despite the limitations of a laboratory-
based assessment and the ever-present chal-
lenge of adversarial evasion, this study pro-
vides a robust and versatile model for the
next generation of Endpoint Detection and
Response (EDR) systems. The established
principles — joint learning for robustness,
IT integration for context, low-latency de-
sign for prevention, and XAl for trust — are
broadly applicable beyond ransomware to a
broad spectrum of cyber threats.

This investigation asserts that a multi-
faceted approach that combines advanced
AT with operational cybersecurity practices
is not only viable, but essential to com-
bat the modern threat of ransomware. The
R2BAR framework represents a significant
advancement towards more resilient, intel-
ligent and autonomous cybersecurity in-
frastructures, offering a powerful tool for
protecting critical digital assets in an in-
creasingly dangerous threat landscape.

Future research should focus on sev-
eral concrete implementation challenges for
enterprise-level implementation. Scalabil-
ity and distributed processing present a sig-
nificant hurdle; Processing behavior logs
from thousands of endpoints in real time
requires a distributed streaming architec-
ture (for example, using Apache Kafka
or Flink) to avoid bottlenecks on a cen-
tral analysis node. Cross-platform com-
patibility is another important takeaway.
Developing lightweight, operating system-
specific data containers and creating uni-
fied behavior models for Windows, Linux,
and cloud-native environments (e.g., con-
tainers, serverless functions) will be essen-
tial for comprehensive security. In addi-
tion, it is necessary to increase the robust-
ness against adversarial attacks. Future
work will include adversarial training tech-
niques, where ML models are trained on
ransomware samples specifically designed
to avoid detection, thereby increasing re-
silience to Al-powered attacks. Compar-
ative cost-performance analysis is also re-
quired to evaluate the operational expenses
(OPEX) of the framework in relation to tra-
ditional EDR solutions, considering factors
such as consumption of computational re-
sources, storage of logs and models, and
potential ransom payments and downtime
reduction.

References

1] A.A. Ahmed, A. Shaahid, F. Al-
nasser, S. Alfaddagh, S. Binagag, D.
Algahtani, Android ransomware detec-
tion using supervised machine learn-

Page 85 of 87



P. Chauhan and S. Teotia / RAMReS Sciences des Structures et de la Matiére

ing techniques based on traffic analysis,
Sensors 24(1) (2024) 189.
https://doi.org/10.3390/s24010
189

L. Albshaier, S. Almarri, M.M.H. Rah-
man, Farlier decision on detection of
ransomware identification: A compre-
hensive systematic literature review,
Information 15(8) (2024) 484.
https://doi.org/10.3390/infolb
080484

A. AlMajali, A. Elmosalamy, O.
Safwat, H. Abouelela, Adaptive ran-
somware detection using similarity-

preserving hashing, Applied Sciences
14(20) (2024) 9548.

S. Alzahrani, Y. Xiao, S. Asiri, N.
Alasmari, T. Li, RansomFormer: A
cross-modal transformer architecture
for ransomware detection via the fu-
sion of byte and API features, Elec-
tronics 14(7) (2025) 1245.
https://doi.org/10.3390/electr
onics14071245

M. Cen, F. Jiang, R. Doss, Ranso-
Guard: A RNN-based framework lever-
aging pre-attack sensitive APIs for
early ransomware detection, Comput-
ers & Security (2024) 104293.
https://doi.org/10.1016/j.cose
.2024.104293

B. Yamany, M.S. Elsayed, A.D. Jur-
cut, N. Abdelbaki, M.A Azer, A holis-
tic approach to ransomware classifica-
tion: Leveraging static and dynamic
analysis with wvisualization, Informa-
tion 15(1) (2024) 46.
https://doi.org/10.3390/infolb
010046

M. Gazzan, F.T. Sheldon, An incre-
mental mutual information-selection
technique for early ransomware detec-
tion, Information 15(4) (2024) 194.
https://doi.org/10.3390/infol5
040194

8]

[9]

[10]

[11]

[12]

[13]

[14]

Vol. 9, N° 2 (2025) 70-87

S. Alzahrani, Y. Xiao, S. Asiri, Conti
ransomware development evaluation.
In “Proceedings of the 2023 ACM
Southeast Conference” (2023) 39-46.

S. Alzahrani, Y. Xiao, W. Sun, An
analysis of Conti ransomware leaked
source codes, IEEE Access 10 (2022)
100178-100193.
https://doi.org/10.1109/ACCESS
.2022.3207757

M. Gazzan, F.T. Sheldon, An en-
hanced minimax loss function tech-
nique in generative adversarial net-
work for ransomware behavior predic-
tion, Future Internet 15(10) (2023)
318.

https://doi.org/10.3390/£i1510
0318

J.A. Gomez-Hernandez, P. Garcia-
Teodoro, Lightweight crypto-
ransomware detection in  Android

based on reactive honeyfile monitor-
ing, Sensors 24(9) (2024) 2679.
https://doi.org/10.3390/524092
679

A. Kharraz, W. Robertson, D.
Balzarotti, L. Bilge, E. Kirda, Cutting
the Gordian knot: A look under
the hood of ransomware attacks.
In “M. Almgren, V. Gulisano, F.
Maggi (Eds.), Detection of intru-
sions and malware, and vulnerability
assessment” (2015) 3-24.

J. Lee, J. Yun, K. Lee, A study on
countermeasures against neutralizing
technology: FEncoding algorithm-based
ransomware detection methods using

machine learning, Electronics 13(5)
(2024) 1030.

Y. Lee, J. Lee, D. Ryu, H. Park, D.
Shin, Clop ransomware in action: A
comprehensive analysis of its multi-
stage tactics, Electronics 13(18) (2024)
3689.
https://doi.org/10.3390/electr
onics13183689

Page 86 of 87


https://doi.org/10.3390/s24010189
https://doi.org/10.3390/s24010189
https://doi.org/10.3390/info15080484
https://doi.org/10.3390/info15080484
https://doi.org/10.3390/electronics14071245
https://doi.org/10.3390/electronics14071245
https://doi.org/10.1016/j.cose.2024.104293
https://doi.org/10.1016/j.cose.2024.104293
https://doi.org/10.3390/info15010046
https://doi.org/10.3390/info15010046
https://doi.org/10.3390/info15040194
https://doi.org/10.3390/info15040194
https://doi.org/10.1109/ACCESS.2022.3207757
https://doi.org/10.1109/ACCESS.2022.3207757
https://doi.org/10.3390/fi15100318
https://doi.org/10.3390/fi15100318
https://doi.org/10.3390/s24092679
https://doi.org/10.3390/s24092679
https://doi.org/10.3390/electronics13183689
https://doi.org/10.3390/electronics13183689

P. Chauhan and S. Teotia / RAMReS Sciences des Structures et de la Matiére

[15]

[16]

[17]

[18]

[20]

[21]

B.A. Algaralleh, F. Aldhaban, E.A.
AlQarallehs, A.H. Al-Omari, Optimal
machine learning enabled intrusion de-
tection in cyber-physical system en-

vironment, Computers, Materials &
Continua 72(3) (2022) 4691-4707.

G. Sakellariou, M. Katsantonis, P.
Fouliras, Probabilistic Measurement of
CTI Quality for Large Numbers of Un-
structured CTI Products, Electronics
14(9) (2025) 1826.

M. Umer, S. Sadiq, H. Karamti, R.M.
Alhebshi, K. Alnowaiser, A.A. Esh-
mawi, et al., Deep learning-based in-
trusion detection methods in cyber-
physical systems: Challenges and fu-
ture trends, Electronics 11(20) (2022)
3326.

A. El Hariri, M. Mouiti, M. Lazaar,
Realtime ransomware process detec-
tion wusing an advanced hybrid ap-
proach with machine learning within
IoT ecosystems, Engineering Research
Express 7(1) (2025) 015211.
https://doi.org/10.1088/2631-8
695/ada3b3

D.K. Sharma, J. Mishra, A. Singh, R.
Govil, G. Srivastava, J.C.W. Lin, Ez-
plainable artificial intelligence for cy-

bersecurity, Computers and Electrical
Engineering 103 (2022) 108356.

A. AlMajali, A. Qaffaf, N. Alkayid,
Y. Wadhawan, Crypto-ransomware de-
tection using selective hashing, Inter-
national Conference on Electrical and
Computing Technologies and Applica-
tions (ICECTA) (2022) 328-331.
https://doi.org/10.1109/icecta
57148.2022.9990424

M. Malatji, A. Tolah, Artificial intel-
ligence (Al) cybersecurity dimensions:
a comprehensive framework for under-
standing adversarial and offensive Al,
Al Ethics.
https://doi.org/10.1007/s43681
-024-00427-4

22]

[24]

[26]

28]

Vol. 9, N° 2 (2025) 70-87

K. Drabent, R. Janowski, J. Mongay
Batalla, How to circumvent and beat
the ransomware in Android operating
system—A case study of Locker.CBltr,
Electronics 13(11) (2024) 2212.
https://doi.org/10.3390/electr
onics13112212

J. Li, G. Yang, Y. Shao, Ransomware
detection model based on adaptive
graph neural network learning, Applied
Sciences 14(11) (2024) 4579.
https://doi.org/10.3390/appl41
14579

N. Mohamed, Artificial intelligence
and machine learning in cybersecu-
rity: a deep dive into state-of-the-
art techniques and future paradigms,
Knowledge and Information Systems
67 (2025) 6969-7055.
https://doi.org/10.1007/s10115
~025-02429-y

P. Ramadevi, K.N. Baluprithviraj,
V.A. Pillai, K. Subramaniam, Deep
learning based distributed intrusion de-
tection in secure cyber-physical sys-
tems, Intelligent Automation & Soft
Computing 34(3) (2022) 2067-2081.

S. Samtani, H. Chen, M. Kantarcioglu,
B. Thuraisingham, FEzplainable artifi-
cial intelligence for cyber threat intel-
ligence (XAI-CTI), IEEE Transactions
on Dependable and Secure Computing,
19(4) (2022) 2149-2150.

S. Thakur, A. Chakraborty, R. De,
N. Kumar, R. Sarkar, Intrusion detec-
tion in cyber-physical systems using a
generic and domain specific deep au-

toencoder model, Computers & Electri-
cal Engineering 91 (2021) 107044.

A. Vaswani, N. Shazeer, N. Parmar, J.
Uszkoreit, L. Jones, A.N. Gomez, L.
Kaiser, 1. Polosukhin, Attention is all
you need, arXiv (2023).
https://arxiv.org/abs/1706.037
62

Page 87 of 87


https://doi.org/10.1088/2631-8695/ada3b3
https://doi.org/10.1088/2631-8695/ada3b3
https://doi.org/10.1109/icecta57148.2022.9990424
https://doi.org/10.1109/icecta57148.2022.9990424
https://doi.org/10.1007/s43681-024-00427-4
https://doi.org/10.1007/s43681-024-00427-4
https://doi.org/10.3390/electronics13112212
https://doi.org/10.3390/electronics13112212
https://doi.org/10.3390/app14114579
https://doi.org/10.3390/app14114579
https://doi.org/10.1007/s10115-025-02429-y
https://doi.org/10.1007/s10115-025-02429-y
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

	Literature review
	Problem formulation
	Research gaps
	Research objectives

	Methods
	Proposed framework architecture
	Dataset curation and preparation
	Feature engineering
	Machine Learning models and training
	Experimental setup and evaluation metrics
	Proposed algorithm: Real-Time Ransomware Behavioral Analysis and Response (R2BAR)

	Results
	Experimental setup and baseline comparison
	Detection performance and accuracy
	Time-to-Detect (TTD) and Time-to-Respond (TTR) performance
	Computational and system overhead
	Effectiveness of Explainable AI (XAI) and response

	Discussion
	Interpretation of key findings
	Broader implications for cybersecurity
	Limitations of research

	Conclusion and future research directions

