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Abstract:

The United Nations Sustainable Development Goals (SDGs) demand intelligent, inclusive,
and ethically driven solutions. Artificial Intelligence (Al) is a disruptive technology in this space,
but its application must be efficient and privacy-preserving. This review explores the integration
of Quantum Computing (QC) with Federated Learning (FL) into a novel architecture:
Quantum-Federated Learning (QFL). QFL facilitates decentralized, secure model training
across clients like hospitals or smart grids without centralizing sensitive data. While FL alone
faces computational limitations, QC addresses these through parallelism and high-speed
optimization. The proposed QFL framework enables edge nodes to train quantum-enhanced
models locally and share only encrypted updates with a central quantum aggregation server.
We detail the QFL architecture—comprising quantum-enabled clients, a secure communication
layer leveraging quantum cryptography, and a quantum server—and its workflow. The review
critically analyzes how QFL can develop applications supporting specific SDGs: SDG 3 (privacy-
preserving collaborative healthcare diagnostics), SDG 7 (optimized demand forecasting in
decentralized smart grids), SDG 9 (secure predictive maintenance in industry), and SDG 13
(collaborative climate modeling without infringing data sovereignty). Major challenges such as
hardware limitations, standardization, and quantum-security issues are discussed. The paper
concludes that QFL represents a strategic milestone towards creating Al systems that are not
only intelligent and high-performing but also ethical, reliable, and sustainable.

Keywords: Quantum Computing; Federated Learning; Sustainable Development
Goals; Privacy-Preserving AI; Climate Action; Smart Healthcare.

1. Introduction

The world today is marked by an persistence of which threatens global social,

unprecedented constellation of threats, the environmental, and economic stability to a
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large extent. Climate change, rising energy
demands, inequality in access to quality
healthcare, and the desperate need for re-
silient industrial innovations are no longer
problems of individual states but global
challenges that must be addressed collec-
tively. To address these concerns, it is
necessary to introduce transformative tech-
nologies that can not only expand the limits
of computation but also incorporate ethical
principles, particularly equity, privacy, and
sustainability. In a bid to align global ef-
forts towards a more inclusive and sustain-
able future, the United Nations introduced
the Sustainable Development Goals (SDGs)
in 2015. These 17 interlinked goals serve as
a roadmap to address major issues in the
global community such as poverty, health
inequality, clean energy, and environmental
protection [1]. The effective realization of
many of these goals depends on data-driven
technologies, which extract actionable in-
sights from complex, diverse, and at times
decentralized datasets without compromis-
ing privacy, security, or other human rights.

In the domain of machine learning,
Federated Learning (FL) has become a
paradigm-shifting framework that differs
from conventional centralized frameworks
that require uploading raw data to a sin-
gle server. In the FL model, heterogeneous
clients, such as hospitals, smart sensors, or
industrial nodes, train a shared model lo-
cally on their devices. Clients send model
updates to an aggregator, rather than raw
data, thus protecting privacy and reduc-
ing data transmission costs [2, 3]. Such an
arrangement makes FL especially appeal-
ing for applications in areas like health-
care, energy systems, and industrial au-
tomation, where health or geographically
dispersed data may be difficult to central-

ize due to regulatory requirements or infras-
tructure shortcomings.

However, traditional FL approaches
have some significant weaknesses. Train-
ing at scale can be computationally ex-
pensive on many edge devices, especially
with non-IID (non-independent and identi-
cally distributed) data or high-dimensional
data. Moreover, traditional architectures
may suffer from convergence bottlenecks
and communication overhead, which is par-
ticularly critical in large-scale applications
with time-sensitive decision-making.

Quantum Computing (QC) offers a
prospective transformative solution. Un-
like classical computers that operate on bits
sequentially, quantum computers leverage
principles such as superposition, enabling
qubits to exist in multiple states simulta-
neously [4, 5]. This allows parallel com-
puting and can exponentially speed up op-
timization for particular operations com-
pared to classical systems. Algorithms like
the Quantum Approximate Optimization
Algorithm (QAOA) and Variational Quan-
tum Circuits (VQCs) have already shown
enormous potential in solving classification,
clustering, and optimization problems es-
sential in Al systems.

The introduction of Quantum Feder-
ated Learning (QFL) synthesizes both clas-
sical Federated Learning and quantum com-
puting, providing privacy-preserving and
decentralized benefits without the limita-
tions of classical FL, and harnessing the
computational power and efficiency gains
offered by quantum computing.

Such integration can then be used to
generate scalable, secure, and intelligent
systems to directly support the realization
of Sustainable Development Goals (SDGs),
as shown in Figure 1.
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Fig. 1. Quantum Federated Framework for SDG.

2. Related work

The convergence of Federated Learn-
ing and Quantum Computing is a rapidly
emerging topic. Early foundational work
laid the groundwork for distributed quan-
tum machine learning. More recently, [2]
explored the shift of QFL from development
to deployment, particularly in healthcare.
[3] provided a comprehensive literature re-
view of QFL foundations, which our review
builds upon by focusing specifically on the
SDG application domain and providing a
critical comparative analysis. Studies like
those of [6] and [7] have begun to address
specific technical challenges such as security
and grid applications, respectively. This
review positions itself within this evolving
discourse by providing a structured analy-
sis of how different QFL approaches can be
mapped to solve pressing global challenges
defined by the SDGs.

3. Current state of experimental
and simulated QFL

Given the hardware limitations, most
advances in QFL have been demonstrated
through simulation or on small-scale classi-
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cal benchmarks. For instance, recent work
presented a simulated QFL framework for
dynamic security assessment in smart grids
[7], reporting a 15-20% reduction in con-
vergence time compared to classical FL on
specific optimization tasks. Similarly, [§]
conducted a proof-of-concept simulation for
medical image classification, demonstrating
the feasibility of the federated training loop
with quantum-inspired models, though on
classical hardware.

These studies are crucial first steps
but highlight the field’s preliminary stage.
They typically use quantum simulators
(e.g., Qiskit, PennyLane) to emulate vari-
ational quantum circuits within a feder-
ated setup. The reported "quantum advan-
tage" is often measured in terms of conver-
gence rate or model performance on specific
datasets, rather than a wall-clock speedup,
which would require access to fault-tolerant
quantum hardware. The absence of large-
scale, real-world deployments underscores
the infrastructural and technological hur-
dles outlined in the following sections. A
summary of key QFL Frameworks from Lit-
erature is presented in Table 1.
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Key Quantum Federated Learning (QFL) frameworks reported in the literature.

Framework Architecture Aggregation  Security Strengths Limitations
P. Liet al. [6] Classical Classical Post-quantum Practical and Limited client-
clients, quan- FedAvg on crypto (PQC) scalable side quantum
tum server server gain
S. Kais et Quantum Quantum Fe- Quantum key Maximal theo- Hardware con-
al. [2] clients and dAvg distribution retical speedup straints
server
Our  frame- Quantum QAOA-based Hybrid QKD- Secure and bal- High cost and
work clients and aggregation PQC anced complexity
server
R. Ballester et Hybrid Entanglement Not specified Poisoning- Quantum net-
al. [3] classical- consensus resistant work required
quantum
clients

4. Background and motivation

4.1. Federated Learning

Federated Learning (FL) provides a
key solution to the requirement for cross-
border, privacy-preserving machine learn-
ing in the contemporary data-driven land-
scape. It supports collaborative training
of a common model across multiple clients,
e.g., hospitals, mobile phones, or indus-
trial sensors, without transferring raw data.
Each client trains a model on its proprietary
dataset independently and only sends the
trained parameters. The parameters are
thereafter combined through methods like
Federated Averaging (FedAvg) to produce
a global model. This architecture preserves
user data privacy and ensures regulatory
compliance such as GDPR and HIPAA,
making FL particularly attractive for sen-
sitive industries like financial services and

healthcare [2, 9].

In addition to data privacy, FL also
provides significant improvements in com-
munication efficiency, especially in environ-
ments with limited bandwidth or with edge
devices. Yet, FL also presents novel prob-
lems such as statistical heterogeneity, where
data is not distributed identically across
clients, and heterogeneity in client capa-
bilities [10, 11]. This heterogeneity makes
training difficult and can cause problems

with model convergence and fairness.

4.2. Quantum Computing

Quantum Computing refers to a
paradigm shift that makes use of quantum-
mechanical properties such as superposi-
tion, entanglement, and quantum interfer-
ence to process information in novel ways.
Whereas binary bits can only have val-
ues of 0 or 1, quantum computers employ
qubits that exist in both states simultane-
ously through superposition, permitting ex-
ploration of a very large search space at
once.

Quantum computers can be signifi-
cantly faster (several orders of magni-
tude) than classical counterparts for cer-
tain tasks. While classical algorithms may
take linear or polynomial time to opti-
mize, quantum protocols may offer much
faster speed and better solutions with sub-
stantially fewer iterations [4, 12], includ-
ing, e.g., the Quantum Approximate Op-
timization Algorithm (QAOA) and Vari-
ational Quantum Circuits (VQCs). Such
algorithms find specific potential in opti-
mization, machine learning, cryptography,
and materials science [5, 10]. For instance,
quantum machine learning algorithms like
Quantum Support Vector Machines and
Quantum Boltzmann Machines promise to
model more intricate patterns with a re-
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duced number of parameters compared to
classical algorithms and have been success-
ful in classification and containment appli-
cations.

But quantum computing is still at an
early phase. Today’s Noisy Intermediate-
Scale Quantum (NISQ) devices are still
small, have limited coherence times, and
generate large error rates. Despite such
limitations, there has been continuous im-
provement in accessibility due to advance-
ments in both hardware and software.
Quantum computing opens a new stage of
computation defined by efficiency, power,
and innovation and has the potential to re-
spond in a multi-faceted way to the chal-
lenges of sustainable development.

4.3. The need for integration: why
Combine Federated Learning
and Quantum Computing?

Both Federated Learning (FL) and
Quantum Computing have their own ad-
vantages; integrating them into Quantum-
Federated Learning (QFL) creates a syn-
ergistic system that reduces the main lim-
itations of both subsystems, as shown in
Figure 2. FL offers advantages in pri-
vacy, decentralization, and data ownership,
but has downsides in scalability, large re-
source requirements, and poor performance
on low-power edge devices. Quantum Com-
puting, on the other hand, provides sig-
nificant speedup and more efficient imple-
mentation of machine-learning workloads
by accelerating both training and predic-
tions through quantum-enabled optimiza-
tions of gradient descent and clustering.
Moreover, QFL with quantum-enabled se-
curity mechanisms like Quantum Key Dis-
tribution (QKD) can provide scalable, se-
cure, and high-performance Al solutions

[6, 13).

5. Architecture of the Quantum-
Federated Framework

One of the possible emerging
paradigms of the convergence of FL and
QC is called Quantum-Federated Learn-
ing (QFL). QFL is meant to harmonize
the requirements of privacy protection,
efficient computations, and shared intel-
ligence, especially in the context of the
United Nations Sustainable Development
Goals (SDGs). This framework is based
on a three-tier architecture: decentralized
intelligence, secure communication, and
quantum-enhanced processing.

5.1. Quantum-Enabled Clients

Quantum-Federated Learning (QFL)
is founded on quantum-enabled clients,
spread across different sectors such as
healthcare, energy, production, and en-
vironmental monitoring. Local datasets
on these nodes, whether with physical
quantum processors or quantum-process-
simulation environments, run Quan-
tum Machine Learning (QML) methods,
such as Variational Quantum Circuits
(VQCs), Quantum Support Vector Ma-
chines (QSVMs), and Quantum Boltzmann
Machines. Such embedded training en-
ables many sophisticated possible appli-
cations: anomaly detection, pattern recog-
nition, and predictive modeling—with the
data resting inside the client, data privacy
is guaranteed and the need to communi-
cate data is kept to a minimum. These
clients leverage quantum capability at the
edge to support the quest for decentral-
ized, privacy-preserving intelligent systems
in QFL implementations.
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Fig. 2. SDG Focused Applications.

5.2. Quantum Aggregation Server
Once local training has been completed,
the quantum-enabled clients upload safely
encrypted model updates rather than raw
data to the Quantum Aggregation Server
(QAS), which runs global training. Un-
like a typical federated server, the QAS
makes use of quantum computer resources
either locally or in the cloud to com-
bine quantum-trained models using tech-
niques, including quantum federated aver-
aging, entanglement-based consensus pro-
tocols, and quantum algorithms like QAOA
to perform optimization. By this means,
the server can perform complex aggregation
efficiently, reduce convergence times, sup-
port diversity of clients, and handle vari-
ability of data. The new global model de-
veloped from the heterogeneous quantum-
local insights is then transmitted back to
the clients for the next training phase.
This aggregation layer, powered by quan-
tum computing, therefore supports scal-
able, secure, and high-performance collab-
orative learning within the QFL network.

5.3. Secure Communication Layer

In a quantum architecture, where mul-
tiple facilities are involved, it is indeed vital
to maintain the integrity and confidentiality
of the data transmitted in the interchanges
between quantum clients and the aggrega-
tion server [6, 7], particularly given the ne-
cessity of ensuring secure communication of
algorithms or sensitive data. As a result,
the QFL architecture includes a quantum-
secure communication stack.

A number of state-of-the-art crypto-
graphic algorithms are used at this level of
communication:

e Quantum Key  Distribution
(QKD): A quantum protocol that
distributes encryption keys and uses
the properties of quantum mechan-
ics; any attempt to monitor the cre-
ation of keys instantly corrupts the
quantum state, making the intrusion
detectable and traceable.

o Post-Quantum Cryptography
(PQC): This cryptography cannot
be defeated by classical or quan-
tum computations in generating keys,
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therefore offering cryptographic pro-
tection in data communications as
well as long-term privacy in a post-
quantum world.

The QFL architecture incorporates
both PQC and QKD to ensure that model
updates, parameters, and all communica-
tions between clients and servers are secure,
tamper-resistant, and confidential. A se-
curity strategy of this nature also enables
compliance, especially in areas that enforce
stringent data-security oversight.

5.4. Workflow of the Quantum-
Federated Training Loop

Quantum Federated Learning (QFL) is
performed in an iterative workflow that is
designed to be scalable, privacy-preserving,
efficient, and structured.

Figure 3 shows the workflow where
the initialization process begins when the
quantum aggregation server produces a
global quantum model and distributes it
to all participating clients. In the fol-
lowing round of local quantum training,
individual clients use their own private
data and quantum devices—either actual
hardware or simulators—to optimize the
model locally.  When this is done, the
clients move to model-update encryption in
which the parameters are encrypted via ad-
vanced protocols under Quantum Key Dis-
tribution (QKD) or Post-Quantum Cryp-
tography (PQC). The encrypted output
is securely sent to the quantum aggre-
gation server. In quantum aggregation,
the server combines encrypted update data
with quantum-enhanced averaging or op-
timization schemes, thereby producing a
higher-quality global model. This refined
model is then redistributed to all clients as
part of the redistribution process, and one
entire round of learning is completed. A

convergence test is then run to see whether
the performance or accuracy has reached an
acceptable level, in which case training is
halted; otherwise, it continues with more it-
erations. Such a secure and efficient proce-
dure allows QFL to tackle real-world issues
in line with the United Nations Sustainable
Development Goals (SDGs), while ensuring
high data privacy and computational effi-
ciency across distributed networks.

5.5. Benefits of the architecture

In the modern academic discussion of
machine learning (ML) architectures, the
QFL model stands out as explicitly promis-
ing the following attributes:

o Decentralized Intelligence:
Knowledge is derived selectively from
distributed data stores worldwide
without holding sensitive data at a
central place.

e Quantum Acceleration: The
training and aggregation are accel-
erated, thereby making it possible to
achieve real-time or near real-time
decisions.

« Data Privacy and Sovereignty:
Using the technology, clients can exer-
cise complete control over their data,
in compliance with international pri-
vacy laws and ethical practices.

o Security by Design: The commu-
nication infrastructure is quantum re-
silient, thereby preparing the system
for future cyber threats.

e Scalability: The framework is de-
signed to support an increasing num-
ber of clients and more complex
datasets without significant perfor-
mance loss.
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Fig. 3. Quantum Federated Learning Process.

6. Applications aligned with Sus- QFL framework can be pragmatically op-

tainable Development Goals
(SDGs)

The deployment of Federated Learn-
ing (FL) and Quantum Computing (QC) in
this synergistic combination has large po-
tential to support multiple Sustainable De-
velopment Goals (SDGs) of the United Na-
tions. The discussion below shows how a

erationalized to fast-track advancements in
four key areas of SDGs: healthcare, clean
energy, industry innovation, and climate ac-
tion.
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6.1. SDG 3: Good Health and Well-
being

Sustainable development entails the
provision of public health as well as the pro-
motion of well-being. However, there exists
a paradox associated with the healthcare
community globally: while there are vast
archives of patient information (electronic
health records, medical imaging, genomic
sequences) opening up unprecedented pos-
sibilities for illness diagnosis, treatment,
and prevention, strict privacy laws (GDPR,
HIPAA) restrict the flow of sensitive data
and limit collaborative Al projects [2, 8.
Quantum-Federated Learning (QFL) ap-
pears to overcome this stalemate and of-
fer healthcare delivery in a secure, privacy-
focused manner. The main advantage
of QFL configurations is that hospitals
and clinics act as quantum-enabled clients,
training quantum machine-learning mod-
els with local and personal databases. In-
stead of sharing raw data, these institu-
tions solely share mathematically secured
updates to their models by communicating
over quantum-protected channels to a cen-
tral aggregation server that merges infor-
mation of all participants to form one global
model without violating data sovereignty,
as shown in Figure 4. The resulting sys-
tem enhances disease prediction, promotes
personalized medicine, and meets regula-
tory standards to provide ethical high-
performing Al in health care that does not
interfere with patient privacy.

6.2. SDG 7: Affordable and Clean
Energy

The world’s transition to clean, renew-
able energy sources such as solar, wind,
and hydro depends on our ability to man-

age distributed energy systems in a secure
and intelligent manner. Modern energy in-
frastructures involve millions of smart de-
vices, including meters, inverters, batteries,
and grid sensors, all of which generate large
amounts of sensitive usage and operational
data [14, 7].

Quantum-Federated Learning (QFL)
enables smart grid devices to function as
intelligent, decentralized units for energy
optimization. At the local level, quantum
models are trained on devices like home en-
ergy systems, solar panels, or EV charging
stations to predict energy demand, detect
inefficiencies, and manage renewable gen-
eration based on localized conditions. In-
stead of transmitting raw data, each de-
vice sends encrypted model updates to a
central quantum server, which aggregates
them into a unified, privacy-preserving pre-
dictive model. With the optimization and
time-series analysis capabilities of quantum
algorithms, QFL processes complex energy
data more efficiently than traditional meth-
ods. This results in more accurate energy
forecasting, reduced waste, lower emissions,
and secure, equitable access to smart energy
solutions [7, 13].

6.3. SDG 9: Industry, Innovation
and Infrastructure

The fourth industrial revolution (In-
dustry 4.0) is driven by smart technologies
such as the Industrial Internet of Things
(IIoT), robotics, and Al. However, indus-
trial data is often proprietary, sensitive,
and difficult to centralize due to competi-
tive and operational concerns. Traditional
cloud-based Al solutions that require raw
data upload expose industries to cyberse-
curity threats and potential data leakage
[15, 16].

Page 62 of 69



G. Kumar and P.K. Verma / RAMReS Sciences des Structures et de la Matiére Vol. 9, N° 2 (2025) 54-69

) WELLERE QFL for H'Eﬂlthﬂ'are

v
QUANTUM

Aggregated
Cluantum Model

MODEL
&
m

* 89
Patipnt Mode

Waights

i3

|

Hospital

— & 0 0 — ..'..
Encrypbed ...

Encrypted . .
Bl

Wizights . . .
Aggregated
Quantum Model

B

Haospital

Fig. 4. SDG 3: Good health and well-being.

Quantum-Federated Learning (QFL) is
transforming industrial Al by enabling se-
cure, decentralized intelligence across man-
ufacturing systems. In this setup, smart
components like sensors, control systems,
and robotic units serve as quantum-enabled
clients, training models locally on data such
as machine logs and telemetry for tasks
like anomaly detection and process opti-
mization. Instead of sending raw data,
only encrypted model insights are shared
with a central quantum aggregation server,
which builds a global model capable of
predicting failures, optimizing schedules,
and improving energy use. Leveraging
powerful quantum algorithms like QAOA
and VQCs, QFL addresses complex indus-
trial challenges efficiently. This approach
supports predictive maintenance, enhances
smart manufacturing without centralized
data storage, and drives innovation in in-
frastructure, supply chains, and product
development.

6.4. SDG 13: Climate Action

Climate change is one of the charac-
teristic problems of the twenty-first cen-
tury.  Surveillance measures, especially
those based on real-time models and pre-
dictions, require information extrapolated
across an enormous range of international
sources such as satellites, atmospheric mon-

itors, ocean buoys, and local weather sta-
tions. However, geopolitical limitations,
national data sovereignty, and fragmenta-
tion of environmental policies often hinder
the possible centralized sharing of climate
data and assembly of common global mod-
els [12, 17, 18].

Quantum-Federated Learning (QFL)
offers a transformative approach to con-
structing distributed intelligence for cli-
mate modeling. In this paradigm, envi-
ronmental sensors and monitoring stations
act as quantum-enabled clients that train
models locally on datasets such as tem-
perature, emissions, and weather patterns.
Instead of sending raw data, only encrypted
model insights are forwarded to a central
quantum aggregation server, which syn-
thesizes a global model capable of predict-
ing climate trends, optimizing mitigation
strategies, and improving resilience. Strong
quantum algorithms, such as QAOA and
VQCs, are engaged to solve tough climate
modeling tasks efficiently. This architecture
supports early warning systems, preserves
data sovereignty, and fosters international
collaboration for climate action. A sum-
mary of SDG impacts by QFL is presented
in Table 2.
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Table 2
Summary of SDG impacts by QFL.

SDG Goal Use Case QFL Role Impact
SDG 3 Smart Healthcare Quantum Neural Net- Personalized care, ethical
works trained on private  Al, disease prediction
health data
SDG 7 Smart Energy  Quantum forecasting and  Energy efficiency, reduced
Grids optimization models emissions, cost savings
SDG 9 Industrial Au-  Quantum anomaly detec- Predictive maintenance,
tomation tion and process opti- secure innovation
mization
SDG 13 Climate Modeling  Quantum forecasting Early warning systems,

with decentralized envi-
ronmental data

data sovereignty, global
insights

7. Comparative Analysis of QFL
Frameworks and Algorithms

While the potential of QFL is widely
recognized, several architectural and al-
gorithmic variants have been proposed in
the literature, each with distinct trade-offs.
This section surveys and compares these

approaches to provide a clearer landscape
of the field.

7.1. QFL architectures

Existing frameworks can be categorized
based on the distribution of quantum re-
sources. Some centralize quantum process-
ing solely at the aggregation server, keep-
ing clients classical [6]. This reduces hard-
ware demands on the edge but may limit
the quantum advantage in local training.
In contrast, our discussed architecture and
those proposed envision quantum-enabled
clients, which offer greater potential for
speedup but face significant hardware ac-
cessibility challenges [2].

7.2. Aggregation strategies

Beyond quantum-enhanced Federated
Averaging (q-FedAvg), other aggregation
mechanisms are emerging. Entanglement-
based consensus protocols, for instance,
promise more robust aggregation against
malicious clients but require sophisticated
quantum communication links that are not

yet practical. Other works explore using
the Quantum Approximate Optimization
Algorithm (QAOA) at the server to solve
the weighted model aggregation as an op-
timization problem, potentially leading to
faster convergence.

7.3. Communication and security
protocols

The trade-off between security and effi-
ciency is pronounced. While Quantum Key
Distribution (QKD) offers provable secu-
rity, its implementation requires dedicated
fiber-optic channels or line-of-sight, limit-
ing scalability. Post-Quantum Cryptogra-
phy (PQC), on the other hand, is more
readily deployable over existing networks
but adds computational overhead and re-
lies on mathematical assumptions that are
still under scrutiny.

8. Challenges in implementing
Quantum-Federated Learning

Despite the promising potential of
the Quantum Federated Learning (QFL)
framework, its implementation on a large
scale faces significant challenges. Barri-
ers such as technological restrictions, infras-
tructural boundaries, and lack of regulatory
clarity highlight the importance of sensible
and multi-pronged growth.
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8.1. Quantum Hardware Accessibil-
ity

Quantum computing is currently still
mostly in exploratory stages, with the ma-
jority of functional processors being either
found in research labs or cloud systems; in
neither case are they suitable for use by the
general population, or for deployment on
edge systems like smartphones or Internet-
of-Things sensors. This limited availabil-
ity of quantum hardware is a major barrier
to realizing quantum-enabled distributed
learning frameworks (such as Quantum-
Federated Learning, QFL). Since edge de-
vices lack the computational power neces-
sary to run even a small-scale quantum pro-
cessor, modern QFL implementations use
quantum simulators running on classical
hardware instead. Despite the useful role of
these simulators in testing hypotheses and
exploring theories, they are limited in scal-
ability and performance. Thus, the use of
QFL at an operational level can be mainly
considered theoretical, awaiting the advent
of miniature, affordable quantum devices
[5, 19].

8.2. Standardization and interoper-
ability

Quantum models have not been fully
integrated into the framework of feder-
ated learning due to the lack of stan-
dardization. The present-day situation is
still fragmented with heterogeneous execu-
tion platforms, programming language li-
braries like Qiskit, Cirq and PennyLane,
and unique evolving hardware architec-
tures. Such fragmentation makes interop-
erability and scaling difficult in Quantum-
Federated Learning (QFL) because it hin-
ders convergence between quantum clients
and classical servers. The resulting mis-
match in model formats, training proto-
cols, and aggregation processes places large
technical burdens and limits efficiency and
inter-institutional cooperation. To over-
come these barriers, it is extremely im-
portant to introduce open-source, modular,
and easily interoperable standards that will
facilitate the integration of QFL and subse-

quently expand system functionality with-
out hiccups.

8.3. Security and Post-Quantum
Threats

Quantum key distribution (QKD) has
been considered rather successfully as a
method to enhance cryptographic security
and there is some prospect regarding its
combination with federated learning; how-
ever, currently, things are still in their
early stages. Even as quantum computing
matures, traditional encryption schemes,
like RSA and elliptic-curve cryptography
(ECC) are more prone to quantum algo-
rithms, like Grover’s algorithm and Shor’s
algorithm, thus jeopardizing confidential-
ity of data as well as the integrity of a
quantum-federated learning (QFL) model.
QFL will therefore have to shift to post-
quantum cryptographic (PQC) functions
that can withstand both classical and quan-
tum attackers as well as reduce latency
and ensure efficient communication. A
fully-fledged security system to incorporate
an efficient integration of good quality en-
cryption, secure key-exchange method, and
tamper-resistant communication channel is
thus a major precursor to the future se-
curity and stability of QFL in real life-
threatening situations.

Quantum key distribution (QKD) has
been considered successfully as a method
to enhance cryptographic security and there
is some prospect regarding its combination
with federated learning; however, currently,
things are still in their early stages. Even
as quantum computing matures, traditional
encryption schemes, like RSA and elliptic-
curve cryptography (ECC) are more prone
to quantum algorithms, like Grover’s algo-
rithm and Shor’s algorithm, thus jeopar-
dizing the confidentiality of data as well
as the integrity of a quantum-federated
learning (QFL) model. QFL will there-
fore have to shift to post-quantum cryp-
tographic (PQC) functions that can with-
stand both classical and quantum attack-
ers while reducing latency and ensuring effi-
cient communication. A fully-fledged secu-
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rity system incorporating efficient encryp-
tion, secure key-exchange methods, and
tamper-resistant communication channels
is a major precursor to the future security
and stability of QFL in real-world applica-
tions.

8.4. Cost and infrastructure con-
straints

Currently, the prohibitive cost and
fundamental technical complexity of the
quantum resources required to carry out
quantum-based federated learning algo-
rithms on a scalable basis impede the
deployment of quantum federated learn-
ing (QFL). Training quantum models
also requires sophisticated cryogenic cool-
ing equipment, magnetic shielding, and
highly skilled labor—involvement that is
impractical for most organizations except
top-tier research organizations and tech-
nology firms.  This limitation restricts
access, especially for research organiza-
tions in developing countries. More-
over, broader scale QFL requires access
to high-capacity, low-latency communica-
tions networks, significant computational
processing capacity, and very reliable data
storage mechanisms—which together com-
pound the challenge of scalability. Reduc-
ing these infrastructure-related barriers is
core to making QFL more practical and ac-
cessible, and hence to realizing globally ac-
cessible quantum-enhanced artificial intelli-
gence [20, 21].

8.5. Ethical and socio-technical im-
plications

The ethical deployment of QFL for
SDGs extends beyond data privacy. Sev-
eral broader concerns must be proactively
addressed:

« Bias and Fairness in Quantum
Models: Quantum machine learn-
ing models are not inherently un-
biased. They learn from data,
and if trained on non-representative,
historically skewed, or imbalanced
datasets—common in healthcare, en-
ergy, and climate data—they can

perpetuate and even amplify exist-
ing societal and systemic inequali-
ties. The inherent "black box" na-
ture of many quantum neural net-
works, compounded by the unin-
tuitive nature of quantum states
and entanglement, further compli-
cates transparency, fairness auditing,
and accountability.  Ensuring fair-
ness requires curated, representative
datasets, algorithmic fairness checks
adapted to quantum circuits, and the
development of explainable quantum
AT (XQAI) techniques.

The Quantum Digital Divide:
The high cost, specialized infrastruc-
ture, and deep expertise required
for quantum technology risk creat-
ing a pronounced "quantum divide."
Developed nations and large corpo-
rations are poised to pioneer QFL
applications, potentially exacerbating
global inequality. Developing coun-
tries, which often face the most acute
SDG-related challenges, could be left
behind, unable to access quantum-
enhanced tools for climate resilience,
healthcare, or smart infrastructure.
Addressing this requires international
cooperation, open-access quantum
simulators, cloud-based quantum re-
source sharing, and capacity-building
initiatives to foster inclusive innova-
tion.

Accountability and Governance:
In a decentralized QFL system, a
global model is co-trained by multi-
ple, possibly anonymous or pseudony-
mous, entities. When such a model
yields an erroneous or harmful deci-
sion—for example, a misdiagnosis in
healthcare or a flawed grid stability
prediction—assigning legal and eth-
ical responsibility becomes complex.
Was the flaw in a client’s local data,
the aggregation algorithm, or the
quantum hardware noise? Clear gov-
ernance frameworks, verifiable train-
ing logs, and standardized liability
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agreements are essential for building
trust and ensuring recourse in multi-
stakeholder QFL ecosystems.

o Environmental Footprint: While
QFL can optimize systems for sus-
tainability (e.g., energy grids, cli-
mate models), the quantum comput-
ing infrastructure itself is currently
energy-intensive. Large-scale quan-
tum processors require cryogenic cool-
ing, high-precision control systems,
and substantial classical computing
support. A holistic lifecycle analysis
of QFL systems—from hardware fab-
rication and operation to decommis-
sioning—is necessary to ensure their
net environmental impact is positive.
Research into energy-efficient quan-
tum algorithms, modular quantum
hardware, and the use of renewable
energy for quantum data centers is
critical to align QFL with the envi-
ronmental principles of the SDGs.

9. Conclusion

The convergence of quantum comput-
ing and federated learningindicates a sig-
nificant paradigm shift towards more ad-
vanced, intelligent, secure, and ethically
sound systems that serve modern soci-
ety. In the current work, the novelty
of the Quantum-Federated Framework en-
compassing the best of these two technolo-
gies is presented to support the most im-
portant United Nations Sustainable Devel-
opment Goals (SDGs), such as healthcare,
clean energy, industry, and climate action.
Nevertheless, despite existing obstacles like
hardware limitations, high costs, and lack
of standardization, the provided roadmap
shows a specific direction for further re-
search. Through interdisciplinary partner-
ship and responsible strategic implementa-
tion, the Quantum-Federated Framework
has the potential to revolutionize the way
the world solves its problems by using safe,
scalable, and universal Al-based solutions.
Moreover, the ethical and socio-technical
dimensions—including fairness, the quan-

tum divide, and environmental footprint—
must remain central to the development
agenda to ensure QFL advances equity and
sustainability in practice, not just in poten-
tial.

10. Future directions

o Bridging Technical and Ethical
Discourse: It seamlessly connects
the preceding technical research di-
rections (hardware, simulators, proto-
cols) with the broader socio-technical
imperative, presenting a holistic vi-
sion for QFL’s future.

o Providing  Actionable Next
Steps: It moves beyond merely iden-
tifying ethical challenges to proposing
specific solutions: developing metrics,
audit frameworks, and policy guide-
lines. This is crucial for transitioning
from principle to practice.

e Reinforcing the Review’s Core
Message: It underscores that for
QFL to truly serve the SDGs, its de-
velopment must be guided by impact
assessments that measure fairness, eq-
uity, environmental cost, and societal
benefit alongside accuracy and speed.

The integration is logical and well-
placed. The paragraph now effectively ar-
gues that overcoming the technical obsta-
cles is only one part of the challenge; estab-
lishing robust ethical and evaluative foun-
dations is equally imperative for generating
trust and ensuring responsible deployment.
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