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Abstract:

This paper presents a Hybrid Particle Swarm Adaptive Neuro Fuzzy Inference System
(HPSANFIS) technique for predicting the energy injected into the grid by a photovoltaic (PV)
power plant. In the proposed predicting model, Particle Swarm Optimization (PSO) was
selected as the optimizer for the training process of the Adaptive Neuro Fuzzy Inference System
(ANFIS). The proposed method is validated by using actual data from the Ten Merina solar
power plants in Senegal. The artificial intelligence (AI) method is compared with methods based
on the performance ratio (Al method) and the method of the online simulation software
Photovoltaic Geographical Information System. These methods were implemented on
MATLAB/Simulink. A daily production prediction was made and analyzed according to the
season (dry or rainy). The performance study showed Root Mean Square Error of 0.6823 kWh,
23.9178 kWh, and 133.0048 kWh, respectively, for the proposed model, Al, and Photovoltaic
Geographical Information System models. This study also showed that the proposed model has
the highest yield across all seasons.

Keywords : Prediction ; PSO ; HPSANFIS ; Photovoltaic Geographical Information System;

Artificial Intelligence ; Solar power plant.

1 Introduction

Global economic conditions have not by 20% compared to 2017. The use of fossil
always been favorable during the year 2018, fuels has an undesirable impact on the
which, at the national level, was manifested environment (greenhouse gas emissions
by an average increase in the prices of fuels and nuclear accidents). To overcome these
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problems, it is necessary to resort to
renewable energies [1]. Solar Photovoltaic
energy system is considered as one of the
most promising technologies of renewable
energy [2-5]. The use of Photovoltaic (PV)
modules for electricity generation purposes
has seen the greatest improvement in the
world in recent decades [6-8]. In Senegal,
persistent production deficits have driven
the state to adopt renewable energy sources
such as solar and wind power. Solar energy
is abundant in Senegal, with an overall
horizontal sunshine level greater than 2000
kWh/m?/year and more than 1500
kW /m?/year of direct radiation and an
average global radiation of 5.8 kW /m?/day
[9]. In 2018, solar PV represented 11.45%
with a total installed power of 143 MWp
[10].

Predicting the energy of PV systems is a
challenging task, as it depends on
irradiation and other weather parameters.
It allows optimal management of the solar
power plant but also of the grid. This will
boost the use of renewable energy and make
a significant contribution to the energy
transition.

Predicting the output of solar PV power is
a critical issue. In the existing literature,
solar power prediction has been widely
studied [4, 11, 12]. Short-term power
prediction methods for solar power plants
primarily comprise two classes: physical
methods and statistical methods. Physical
methods imply that a physical equation is
established for prediction, rendering of the
solar power generation procedure and
system characteristics, and in combination
with forecast weather data. In [13], the
authors used a physical method based on
the Kalman filter to study the impact of
meteorological parameters on short-term

forecasting. In [14], an analysis of different
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techniques for an accurate estimation of the
wind effects of PV is carried out. The
authors tested several existing methods to
evaluate the PV module temperature as a
function of solar irradiance, ambient
temperature, and wind.

Statistical methods are intended to
summarize inherent laws to predict solar
power based on historical power data [15].
Statistical methods have been used
successfully in time series forecasting for
several decades. Using the statistical
approach, the relations between predictors,
variables used as an input into the
statistical method, and the variables to be
predicted are derived from statistical
analysis [16]. In [17], the authors made very
short-term power predictions for PV power
plants using a simple and effective
statistical method. This method, based on
short-term multivariate historical datasets,
is a combination of radiation classification
coordinate (RCC) and long short-term
memory (LSTM).

The above methods have their respective
advantages, but the non-stationary
characteristics of solar power output have
a significant effect on the convergence and
properties of them. A few studies have been
conducted to predict the output of solar PV
systems.

In recent years, artificial intelligence (AI)
methods have proven to be a powerful tool
for  mnonlinear  complex  engineering
applications. The main advantages of these
computational tools are their versatility,
robustness, fast computing processes, and
optimization achieved through learning
processes [2, 12, 18].

In [15], a comprehensive method to predict
the solar power output based on historical
data is presented. The work explores the

option of using Artificial Intelligence-based
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methods like Artificial Neural Networks
(ANN) and an Adaptive Neuro-Fuzzy
Inference System (ANFIS) for predicting
the power output. It can be inferred from
the results that, regarding predicting PV
generation, the ANN-based forecast
delivers better results when compared to
the NF-based forecast. ANN is used in [19]
to estimate the Performance Ratio (PR) of
PV modules under outdoor operating
conditions. The results have shown that
ANN accurately method the PR regardless
of PV module technology. Bassam et al
(18] use an ANFIS method with seven input
parameters to estimate PV array operating
temperature. Validation results indicate
that the ANFIS method generates good
temperature estimation for the PV array at
different atmospheric and operational
conditions. A method based on ANN is
presented in [20] for predicting solar
irradiance. In [21], a short-term forecasting
for solar irradiation is presented. This
methodology is based on the multilayer
Neural Network. The results show the
efficiency of this method and the relevance
of the chosen approach. In [12] a
comparison of different soft computing
techniques for forecasting energy produc-
tion is presented. These techniques based
on Data Mining (DM) are ANN, Support
Vector Machines (SVM) and Decision
Trees (DT). In [22], the authors proposed a
prediction technique based on ANFIS
optimized by Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) (GA-
PSO-ANFIS) for short-term photovoltaic
power generation forecasting. In [23], the
power output forecasting of PV systems by
using ANFIS, comparing the accuracy with
particle swarm optimization combined with
the artificial neural network method (PSO-

ANN) is simulated. The simulation results
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show that the forecasting with the ANFIS
methodology is more accurate than the
PSO-ANN method.

All these techniques have limitations
ranging from robustness to implementation
complexity. In addition, artificial intelligen-
ce techniques are most suitable for solar PV
systems where a medium-term horizon (H
24) is chosen. Among the techniques
presented in this review of the literature,
the ANFIS methodology is the most
efficient for prediction. Like the other
methods, this one presents a difficulty
linked to the choice of its membership
functions (MsF) (number and type) for its
learning. This choice has a considerable
impact on the performance of the algorithm
and must, therefore, be made with
precision. A large number of MsF implies
the need to set additional parameters,
thereby increasing the execution time of the
algorithm. A very small number of MsF
causes the algorithm to diverge due to a
lack of information.

The contribution of this study is to develop
a Hybrid Particle Swarm Adaptive Neuro
Fuzzy Inference System (HPSANFIS)
algorithm for the prediction of the daily
production of a photovoltaic solar power
plant to improve plant planning and reduce
certain risks. The rest of this paper is
organized as follows: the second section
describes the study site and data
presentation. The third section presents the
proposed approach. The fourth section
presents the obtained results, and the last

section contains the conclusions.

2 Study site and data presen-

tation
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The study site is Ten Merina solar
power plants located at 15°9’21.1”N and
16°35’40.2”W in Senegal in West Africa
(Fig.1). This solar power plant is connected
to the grid of the national society of
electricity (SENELEC).

The Ten Merina solar power plant has a
capacity of 29.5 MWp. It delivers 20 MW
on the national electrical grid of
SENELEC. This solar power plant avoids
the emission of 34 kT of CO, per year. The
specific characteristics of the site area are
given in Table 1. A data acquisition system
records the evolution of the operating
parameters measured by the inverters. Two
types of measurements are recorded:
measures to control the facility’s produc-
tion (production history) and measures to
facilitate maintenance (real-time measure-
ments and fault history). The real time and
cumulative values can be viewed locally via
a serial link or remotely via an integrated
modem connection. The recorded informa-
tion is automatically returned and managed
as synoptic and detailed in understandable
tables. This system is a full SCADA
(Supervision, Control & Data Acquisition)

which allows the operator to virtually
control the operation of the plant remotely.
The data acquisition system allows, among
other parameters, to track irradiation,
potential produced power, photovoltaic
module temperatures, ..

In this work, we use solar irradiation data,
photovoltaic module temperatures, and
production data. The data series ranges
from February 2, 2018, to August 18, 2018,
which is the time of year when production
is most critical. Usually, during this period,
it is very hot with considerable dust. The
period from February 2nd to August 18,
2018, coincides with the height of Senegal’s
hot season, characterized by intense solar
irradiation, high module temperatures,
frequent dust events, and marked
transitions between the dry and rainy
seasons. Production during this window is
most susceptible to extreme climatic
variations and operational challenges,
including rapid weather fluctuations and
maintenance constraints. This makes the
dataset particularly relevant to evaluating
model performance under operationally

challenging and variable conditions.

Table 1
The specific characteristics of the power plant.
Facility
Output power 29.4912 MWp STC
Modules
Type CS: MAXPOWER CS6U-320-P JS: JKM320PP-72-320
Unitary power Average of 320 Wp @GSTC
Number of modules 92160
Type of cell Crystalline-polysilicium, 6 inch
Number of cells 72
Inverters
Constructor Schneider
Type Conext Core XC-680
Number of inverters 36[12 PTRJ

Unitary power
Site

Site area
Altitude

2040 KVA (3%680 KVA)

83 ha
40 m
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Fig. 1. Ten Merina solar power plant location

3 Materials and methods

Three methods are used in this work.
Two analytics methods based on mathema-
tical methods and a method based on

artificial intelligence.

3.1 Analytic method based on
the Performance ratio (Al
method)

A1 is an analytical method presented in
the literature for predicting the output of a
PV plant. It based on the

performance ratio.

solar is

Like any energy conversion system, the
performance of a photovoltaic installation
is characterized by its yield. It is the

calculation of the Performance Ratio (PR)

that makes it possible to account for the
quality of operation of an installation
independently of the irradiation or the peak
power of the modules.

In this method, an estimate of the energy
produced by the solar power plant is made
based on the PR of the plant and the solar
radiation measured during the same
technical unavailability period, using the

formula of Eq. (1).

__ PRxPpxly

Ep (1)
Iy sTC

Where E is electrical energy, which should,
in theory, have been produced (kWh); PR
is the average performance ratio during the
reference periods; P, is the actual name-
plate capacity installed in the Facility (W);
Lsrc the
(Wh/m?); I, is the solar radiation measured
during the incident (kWh/m?).

is standard solar radiation
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The developed prediction method has two
inputs: solar radiation and a performance

ratio. The output is energy (Fig.2).

3.2 Photovoltaic Geographi-

cal Information System

(PVGIS) method

PVGIS is a tool for estimating the
production of grid-connected photovoltaic
systems. Using its integrated Google Maps
interface, it is very easy to obtain the
production data of a PV system from the
precise sunshine data of the site (including
remote masks linked to relief, hills, and
mountains). In addition, PVGIS offers

precise, high-definition maps of sunshine

Performance Ratio
of power plant

Vol. 9, N° 1 (2025) 145-165

(irradiation in kWh/m?) and temperature
for most countries in the world.

The PVGIS methodology is based on the
irradiation and the yield of the installation.

The energy is obtained by using Eq. (2).
E=Axl.*Cy*r (2)

Where A is the area of the installation; C,
is the coefficient of losses, and r is the plant
efficiency.

The loss coefficient is evaluated over the
entire installation. Losses are generally
attributed to factors such as inverters,
cables, ambient temperature, and irradia-
tion level, among others.

This method incorporates two input
variables: efficiency and solar irradiation.

The output will give the energy (Fig. 3).

Eq.l ~

Fig.2. A1 method.

Yield of power
plant

Ep

Fig.3. PVGIS method.
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3.3 HPSANFIS method

The Adaptive Neuro-Fuzzy Inference
System is a process for the mapping of a
given data set from multiple inputs or a
single input to a single output, which is
achieved by fuzzy logic and artificial neural
networks. The Neuro-Fuzzy (NF) system
corresponds to a fuzzy method of Takagi-
Sugeno, where the weights of the neural
network are equivalent to the parameters
of the fuzzy system. This structure was first
presented by Jang in 1995 [24]. NF
constructs a Fuzzy Inference System (FIS)
whose fuzzy membership function parame-
ters are adjusted using a hybrid learning
method that includes back propagation and
least square algorithms [25, 26]. NF
comprises the advantages of ANN and FLC
algorithms and can handle the non-linear
behavior[27]. It provides a rapid dynamic
response, high convergence speed, and a
robust, flexible design. The NF produces a
set of inference fuzzy rules to adjust the
assighed membership function until the
error is reduced and the desired output is
obtained. The value of the membership
function is adjusted until the error is
minimized. It becomes a learning method
and works to predict the production when
the membership functions are adjusted.
Moreover, the checking data is compared
with the trained data. If an error is
generated, the value of the membership
function is adjusted until the error becomes
minimum [28]. The membership functions
are optimized and tuned by the application
of back propagation and the least squares
algorithm. To overcome this problem,
optimization algorithms of the Meta-heuris-
tic type are often used. Among them, we
can cite the PSO. It is a stochastic, popu-

lation-based evolutionary algorithm search
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method, modeled after the behavior of bird
flocks. The PSO algorithm maintains a
swarm of individuals (called particles),
where each particle represents a candidate
solution. Particles follow a simple behavior:
emulate the success of neighboring particles
and their own achieved successes. The
position of a particle, therefore, is influen-
ced by the best particle in a neighborhood
as well as the best solution found by all the
particles in the entire population [29-32].
Each particle represents a potential solu-
tion in the swarm and determines the
required parameters that minimize the
objective function in a given search space.
The personal best position Ppes. corresponds
to the position in the search space where
the particle has the largest value as deter-
mined by the objective function “F”, consi-
dering a minimization problem. The global
best position is the highest position value
amongst all the personal bests, which is
denoted by Gies [29, 33]. Here, a Hybrid
HPSANFIS-based algorithm is proposed for
optimal tuning of NF membership function.
One of the biggest difficulties with NF is
the optimal choice of membership functions
(MsF). This means that, in general, the
output obtained differs from that desired
and which is materialized by the Root
Mean Square Error (RMSE criterion). The
HPSANTFIS flowchart is shown in Fig. 2. Its
structure includes two inputs (Solar
Irradiation and PV module Temperatures)
and one output (Production) (Fig.4). The
MsF function represents the activation
function of the neurons in the first layer. It
can be in several forms (Triangle, Trape-
zoidal, Gaussian, ...). Eq. 3 presents a
membership function (for the inputs) of the
Gaussian  type. PSO  algorithm is
implemented assuming PSO parameters as
indicated in Table 2.
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Table 2

Parameters used for PSO algorithm.
Parameters Values
Number of particles 25
Number of iterations 1000
Maximum velocity 0.1*50
Acceleration constant 1 1
Acceleration constant 2 2
Inertia weight 1

Inertia weight damping ratio 0.99

Each controller variable is defined by
10 MsF. The speech universe of each
ANFIS controller variable is divided into 10
MsF defined by their center. ANFIS has a
fixed structure composed of five layers
(Fig.5). They are modeled by Egs. (3) to
(10).

Layer 1: Fuzzification

In i\?

Tmi_Tm 2
ugi(T) = exp [— m) ]
=_Z =11ri
T = ;Zi=1 Tmi
1 —_
x== I'V—l(lri — 1)
y= _Zl 1(Tmi — Tm)
{ U(Iri) = \/} (6)
o (Tin) = \/;
where 11 is the Gaussian MsF; x and y are
variances; o is the Standard deviation; I,. is
the average of the irradiation; T, is the

average module temperature; N is the size
of the database.

Layer 2: Fuzzy rules
= .uAl(Ir) * g (T) =

2 s N2
exp [ et - () ] ™

where w; is the degree of activation of fuzzy

rules.
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Layer 3: Normalization
_ IT‘I:_TT 2_ Tmi—'fm 2
o w EXP[ (565) (2 )]
CTiwi _(Iri~Ir\?_(Tmi~Tm)?
Ziexp (aan-)) ( o(Tmi) )

where w; is the degree of veracity of the

(8)

activation of a neuron.

Layer 4: Defuzzification
Li=Tr\?  (Tpni=Tm)?
ews|-(255) -(2n) |
Ii=Tr\?  (Tmi=-Tm?
mew|-(23) -(as) |
(pi I + q; * Ty +17) (9)

where Eg; = (p;* I + q; * Ty, +1;) is the
actual production of the power plant; (pi,

G;=w; xEq; =

qi, ri) are output parameters (consequents),
determined during the learning process; G;
is the output of the fourth layer.

Layer 5: Output
E, =X;w;* Eg

T \2 T 2
_(rizIr)" _(Tmi—Tm
exp[ (0'(11')) ( o(Tm) ) ]

T \2 = 2
. _ Lri=Ir _ Tmi-Tm
Zlexp[ (U(I-ri)) (a(Tmi)) ]

L +q;*Ty + ri) (10)

=%

X (p; *

where Ep is the Predicted production (Pr).
The consequent parameters are given in
Table 3

Table 3

Consequent parameters of HPSANFIS
MsF pi qi ri

MsF1 -2.53 -512.77 36808.90
MsF2 20.40 -571.49 38572.09
MsF3 17.44 -244.77 35776.15
MsF4 15.26 -517.38 33502.09
MsF5 21.42 -529.03 35849.30
MsF6 33.31 -487.14 48511.01
MsF7 18.81 -1585.20 -387855.60
MsF8 11.60 -951.17 -163653.02
MsF9 20.12 -466.60 36407.45
MsF10 22.81 -719.93 30265.01

The error between actual and predicted

production is minimized with the objective
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function F (Eq. (11)), which should be
minimized. The best position discovered by
any particle in the entire swarm is the best

global position.
F=[(pi*l +q;*Tp+1)—

exp |- ) (T’
siexp |-(255) (i)

qi * Ty +17) (11)

2i * (pg * I +

2

Eq. (11) shows that optimizing the fitness
function means optimizing the parameters
(p,q,r,and o). The particles Gbest and
Pbesti are saved by taking up the objective
function’s values during the optimization
process. The next velocity (Eq. (13)) and
position (Eq. (12)) of the candidate
solution are determined by the basic PSO
algorithm. The best position reached by the
swarm is modeled by Eq. (14). Particles are
represented by MsF.

au()\ !
RUPE = w0+ (52)

du (T
(T IiH—l = .u(Tm): + (T)L

(12)

t+1

o, (du(lr) ’

( <du(1r)>

dt

i

i

(13)
Gpest = max(Pbest,i) = max(//‘(lr f! M(Tm)f)(lél)

where Ppest is the Personal best position for
the particle itself; Gpese is the Global best
position among all particles; w, is the
Coefficient of inertia; ¢; and ¢y are
acceleration coefficients; 1,,; and 1, are
random numbers drawn uniformly in [0,1].
The same process applies to the tempera-
ture MsF (second input). Fig. 4 illustrates
a flowchart of the methodology employed.

The experimental database consists of

dt ) + Clrnlpbest,i + CzrnZGbest
i

du (T, )\ du(T,)\"
i( dtm ) =W ( dtm )i + Clrnlpbest,i + 372G pest
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datasets measured during the Ten Merina
solar power plant system operations
between February 2, 2018, and August 18,
2018. Variables that integrate the database
are solar irradiation, PV module tempera-
ture, and energy production. The ANFIS
structure is generated from the two input
variables to yield the optimum method for
production prediction of the solar power
plant. The inference system type is defined
for the output method behavior, where a
zero-order Sugeno method was employed in
the modeling process due to the non-linear
relation between inputs and the output
method predictor. Thereby, the evaluation
of several combinations of membership
functions in the zero-order Sugeno ANFIS
structure was suggested as a suitable
strategy to find the optimum modeling
results. Conversely, the membership
function number corresponding to each
input variable is optimized by PSO algo-
rithm, where particles are materialized by
birds. To validate the obtained results from
the proposed predictor method, they were
compared to the actual data, considering
the statistical agreement. The root mean
square error (RMSE) determines the
accuracy of the method by comparing the
deviation of simulated and experimental
values. Knowledge of this criterion is
relevant to evaluate whether the prediction
sub-estimated or over-estimated with
respect to real data. For methodological
rigor, the dataset was partitioned as
follows: 70% of the data (February 2nd to
June 15, 2018) was used for training the
HPSANFIS model, and 30% (June 16th to
August 18, 2018) for testing. This stratified
split ensures that the test set covers the
onset and peak of the rainy season, allowing
for robust assessment of generalizations

over seasonal shifts.
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PSO algorithm
to optimize the MsF of ANFIS

Fig. 5. HPSANFIS structure.

4 Results and discussion

This section presents the results of the
yields and performance metrics obtained.
Each of the three prediction methods has

different inputs from the others.

4.1 Input parameters of
prediction methods
The  three  prediction  methods

presented in this work each incorporate two
inputs. These input parameters are all
related to energy. The yield and perfor-
mance ratio used in the PVGIS and Al
methods depend on climatic conditions
such as temperature and irradiation. The
yield is related to the PV field, while the
performance ratio is evaluated over the
entire installation. The reference period in
this work is one day. These parameters are

given in figure 6.

4.2 Learning of the
HPSANFIS prediction
method

Learning of the ANFIS methodology is
accomplished through a series of epochs,
performing an optimization process to mini-
mize the differences between experimental
data and simulated output. In this work,
we carried out evolutionary learning with
the PSO technique. PSO made it possible
to make an optimal choice of the parame-
ters of the MsF, but also the sharing of the
database for the learning part and the test
part. A comparative study is also carried
out with a prediction method based on the
ANFIS technique. Figure 7-a and 7-b show
respectively train and test data with RMSE
criteria (Eq. (15)). Table 4 gives the variation
of specification parameters, and Table 5 gives
the HPSANFIS learning parameters.
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RMSE = \/%Z?zl(Output—Target)z (15)
The HPSANFIS prediction method

generates the production from input data
from solar irradiation (Wh/m?/day) and

PV module temperatures (°C).

4.3 Comparative study of the
three methods

Fig. 8 shows the variation in predicted
production with the different methods.
This production is compared with the
actual daily production of the plant. As the
Al and PVGIS methods are classical, they
do not adapt quickly to a large variation
such as the one observed on March 10. On
the other hand, the intelligent HPSANFIS

Vol. 9, N° 1 (2025) 145-165

method follows the reference and predicts
production during this period. This adap-
tive capacity is because, during a variation,
the algorithm reevaluates its parameters
relatively quickly thanks to its interpret-
tation capacity. The same phenomenon is
observed between June and August. The
difference between the three methods in
relation to the reference appears clearer.
These results show that the adaptive
method HPSANFIS is more efficient. The
choice of prediction tools must take into
account not only the method to be used,
but also the inputs. As the output of the
PV solar power plant is directly dependent
on the module temperature and the solar
irradiation, the prediction method must

integrate the latter two.

Table 4
Prediction method parameters variation.
Parameters Min Max Units
Irradiation (Ir) 3274.8 7874.7 Wh/m?/day
PV module Temperature (Tm) 29.800 59.000 °C
Production (Pr) 906.00 167860 kWh
Table 5
HPSANFIS learning parameters.
FIS type Sugeno
Epochs 1000
Fuzzy Rules 10
Input 1
Membership functions
Type Gaussian
Number 10
Input 2
Membership functions
Type Gaussian
Number 10
Output
Membership functions
Type Linear
Number 10
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4.4 Impact of precipitation

In Senegal, there are two seasons: the
dry season from November to June and the
rainy season from June to October. Fig. 9
shows the evolution of wind speed, relative
humidity, and precipitation. The relative
humidity varies according to these seasons.
In the area where the Ten Merina solar
power plant is located, where high wind
speeds are recorded (up to 7.5 m/s), an
analysis of the production is carried out. It
is noted that production is generally lower
during the period of 26 June (rainy season).
This is explained by the fact that the
relative humidity is higher during this
period, with a maximum value of 72.22%.
In addition to this, there are also cloudy
periods on rainy days. This significantly
reduces production.
Fig. 10 shows the power plant's production
during the dry season between February
and June. This season consists of two
periods. A period from February to April
marked by strong winds (4 to 7.5 m/s),
with very high temperatures reaching 39°C.
Irradiation is generally good during this
period except for a few cloudy days at the
beginning of February and at the end of
March. The period between April and June
records the best irradiation rate of the year
with average temperatures of 30 °C
between May and June. On the other hand,
relative humidity and wind speed are
always high. All these factors have caused
production to fluctuate during this period.
The HPSANFIS method, therefore, enables
us to predict production in these
circumstances, unlike the other two
methods, which are static in nature.
Fig. 13 shows the production of the plant

during the rainy season between June and

Vol. 9, N° 1 (2025) 145-165

August. During this season, the lowest
wind speeds and the highest relative
humidity are recorded. Cloudy periods are
observed on most days. This results in
sudden variations in radiation, which, in
turn, leads to variations in production. The
static methods Al and PVGIS, therefore,
have difficulty making a good prediction.
This is not the case with the HPSANFIS
method.

Error measures of the mean squared error
(MSE), the root mean squared error
(RMSE), and the mean absolute percentage
error (MAPE) were employed in choosing
the best method among candidates.
Specifically, the MSE measures an average
value of squares of errors, formulated as Eq.
(16). Eq. (17) and Eq. (18) give respectively
RMSE and MAPE expressions. These
results quantify the difference between the
predicted and actual output of the plant.
The proposed HPSANFIS method has the
best performance. It is likely to adapt even
to the most extreme conditions of variation,
but it has limitations linked mainly to its
learning curve and its execution time. The
results of the statistical study are shown in
Fig.11 and Fig.14. These figures show that,
across all seasons (rainy or dry), the
proposed model always has the best
performance. Performance is also another
criterion for the performance of the models.
It is given by Eq. (19). It is given for each
model and for each season by Fig.12 and
15. These figures show that the proposed
model has the highest yield across all

seasons.

MSE =13, (E, - E,)’ (16)
RMSE = \MSE (17)
MAPE =100 + 2%, EE‘—E”| (18)
Yield (%) = i—p %100 (19)
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Significant variations in the plant's output
can harm the power grid. The most
common consequences are disconnection of
the PV gystem, voltage dips, and bumps.
Prediction, therefore, becomes an effective
way to manage these problems.

4.5 Discussion

The results obtained in this study
confirm  the superior accuracy and
adaptability of the proposed HPSANFIS
hybrid Al model for photovoltaic
production forecasting at the Ten Merina
solar power plants. Beyond predictive
metrics, these findings have significant
implications for practical and strategic
energy management in the regional
context.
From an operational perspective, improved
prediction of PV  output directly
contributes to grid stability. Accurate day-
ahead and intraday forecasts enable grid
operators (such as SENELEC) to anticipate
fluctuations, optimize dispatch, and
mitigate risks of voltage dips, disconnect-

tions, and supply imbalances induced by

renewable  variability. The adaptive
capacity of the HPSANFIS method,
particularly during periods of extreme
meteorological variation, supports the
integration of large-scale solar PV without
undermining grid reliability - a key
challenge for African utilities.

On a broader scale, robust solar forecasting
is essential for energy transition strategies
in  Africa. Many African countries,
including Senegal, are rapidly increasing
their renewable energy share to reduce
dependence on fossil fuels and wmeet
sustainability —targets. As penetration
grows, the unpredictability of PV
generation becomes a major barrier to grid
expansion and effective market design. The
hybrid Al approach demonstrated here can
facilitate higher renewable integration by
providing accurate, reliable forecasts to
support system planning, investment, and
real-time operations.

Moreover, the methodology can inform
future expansion policies, integrating not
only solar but also other intermittent

resources (such as wind) within regional

Page 161 of 165



E.M. Ndiaye et al. / RAMReS Sciences des Structures et de la Matiére

energy mixes. By enabling plant owners
and grid operators to anticipate production
shortfalls and plan appropriate contin-
gencies, the approach also supports
consumer-side benefits, including improved
service reliability and reduced outage risk.
Finally, the discussion of adaptive
forecasting models contributes to global
scientific and technical discourse on energy
system  modernization in  developing
regions. Future work may extend the
present approach to multi-plant
aggregation, storage integration, and cross-
border grid coordination, further
strengthening Africa’s capacity for a just

and sustainable energy transition.

5 Conclusion

A new method based on evolutionary
ANFIS learning with the PSO method was
proposed in this paper for forecasting the
energy production of Ten Merina solar
power plant. The spike and chaotic changes
in solar irradiation and PV module
temperature series data are used to learn
the  HPSANFIS  methodology.  This
methodology is compared with two other
methods in the literature: the method used
by the PVGIS simulation software and the
method based on the performance ratio (Al
method). The specifications of the energy
production  estimation  highlight the
necessity of solving a complex task
consisting in predicting the Ten Merina
solar power plant production system based
on the history of production data and
weather conditions (availability of solar
radiation and PV module temperatures).
The proposed HPSANFIS model reliably
forecasts PV production across challenging

Senegalese seasons, outperforming classical

Vol. 9, N° 1 (2025) 145-165

methods. Its adaptability offers utilities
and plant operators enhanced planning
tools for grid integration and stability.
Future work will extend this model to real-
time prediction and broader integration of

renewable and storage systems.
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