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Abstract:

In this paper, we develop a hybrid scheme that combines finite volume and finite element
methods for an asymptotic model of the Kazhikhov-Smagulov equations. We first establish the
stability of the proposed scheme and its convergence toward the weak solution of the problem.
Numerical simulations are then performed to verify the scheme's robustness and confirm the
convergence of the solution.
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1. Introduction

Qr=1[0; T[x Qwith T"> 0 and 2 an open
subset of R? (see [1]).
O,p +div pW =0,
p OW+W. VW —uAW +Vp (1)
\  — pt VdivWw = pf,

The equations considered in this study
are those of the Kazhikhov-Smagulov
model, which describes the behavior of a
homogeneous mixture of two viscous and

incompressible fluids in a subset of R3 over

a time interval |0 ; 7], under a mass effect
following Fick’s law. Let W denote the
barycentric speed or the average mass
speed of the mixture; the conservation laws
for mass and momentum lead to the

following differential equations defined in

* Corresponding author:

where p represents the pressure, f = —g k
with ¢ the gravitational acceleration,
k =t (0,0,1), p and p’ are assumed to be
constants with 4 > 0 and 2u + 3u” =0, p
is the density of the mixture, and g

characterizes the dynamic viscosity.
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Let us denote by V = (u,v,w) the aver-
age volume velocity of the mixture, where
U = (u,v) represents the horizontal compo-
nents of V. In this framework, Fick’s law is
expressed as

A
W=V -2V (2)

where A is the mass diffusion coefficient. Us-
ing this relation, one can derive the following

system:

Op+V -Vp=AAp

p(OV + (V- V)V) = pAV = \(Vp- V)V
AV V)V £ A2 (Vp - v(vpp) - A;w)
+VP = pf

div(V) =0

Following the asymptotic analysis performed
in [2], this system can be rewritten in a re-
duced form involving only U = (u,v):

c
Re
p(OU + (U -V)U) — é AU~ =((Vp-V)U

1 Re
+HU - V)Vp) + 72 PVp=0

Op + div(pU) = — Ap

div(U) =0
(

3)
where p denotes the density, U = (u, v) is
the two-dimensional velocity vector, ¢ = AP

with A the mass diffusion coefficient, p a ref-
erence density, and g the dynamic viscosity
of the mixture. Finally, Re is the Reynolds
number and F'r the Froude number.

The incompressibility condition is expressed
as div(U) = 0.

To the system (3), we add the following
boundary and initial conditions:

9
%:0 on

U=0 on Y (4)

pit=0 = po; Uj=o = Uy in @,
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where Y = [0,T] x 9Q), and @ is an open
subset of R2.

Few studies address the numerical simula-
tion of non-homogeneous Navier-Stokes equa-
tions, also known as Kazhikhov-Smagulov
equations [1]. However, existing works [3-7]
provide useful references. Most approaches
rely on finite volume or finite element meth-
ods, ensuring stability and convergence.

For instance, [4] analyzes an Euler-FEM
scheme for mass diffusion, while [6,7] estab-
lish stability for discrete models with density
truncation. [7] also studies asymptotic be-
havior as A — 0, leading to a weak solution.
The full model with O(\?) terms is explored
in [3]. Hybrid schemes, combining finite vol-
ume and finite element methods, were in-
troduced by Catarina Calgaro et al. [8] for
incompressible flows and later extended to
other models [9,10].

This work follows two main directions.
First, a hybrid scheme is developed to dis-
cretize (3)-(4), using finite volume for mass
conservation and finite elements for momen-
tum. The mass equation employs a two-step
finite volume method with a second-order
Runge-Kutta scheme, while velocity evolu-
tion follows an Euler scheme.

Let h > 0, we denote by 75, a partition of ()
composed of conforming and isotropic trian-
gles. We take Wy, xV,, C H'(Q) x Hy(Q) the
finite elements spaces associated with density
and velocity, respectively. For the simplifica-
tion of notation, we restrict our study to the
case of uniform time discretization of [0, 7.
Let N be a positive integer, then we define
At = T/N the time step and (" = nAt)"_,
the partition of [0, T]. Moreover, we consider

the following stability condition:

0< At < coh (5)
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where ¢y > 0 is a constant that is indepen-
dent of h and At, but depends on the velocity
field U € V,. Clearly, (5) is a typical CFL
condition often used for the numerical so-
lution of conservation laws (see [11]). Let
(pp, Up') € Wh x Vy, be the approximation of
density and velocity at time ¢". We denote
by pna:r and Upa¢ the piecewise constant
functions in time taking values p; and U}’
on (t"~1,t"], respectively.

The second direction of this work aims to

demonstrate the existence of a unique solu-

tion (p2+1,ph+l Un+1)

establish its convergence to a weak solution
(p,U) of the system (3)-(4).

Thus, this paper is structured as follows:

for the scheme and

the first section introduces the model and
key existing results; the second details the
hybrid scheme construction using finite vol-
ume and finite element methods; the third
establishes its properties, including stability,
a priori estimates, and convergence analysis
and the last one is dedicated to numerical
results.

2. Preliminary

2.1. Notations

In this section, we define specific func-
tional spaces for the Kazhikhov-Smagulov
model and introduce the concept of weak

solution for the asymptotic model. Set

H={Uecl*Q)?: Un=0 on 0Q}

and

v={UeH(Q)?: U=0 on 09Q}.

On the other hand, we consider the analo-
gous space,

13(Q) = {p cmrQ):

or _
n =0 onodQ,
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/Qp(x)zfpo}

with HY = /H‘ H30(Q)
where p = / po and
mes(

0
HY, = {P € H*(Q): % =0 ond@,

/Qp(a:) :O}.

It is shown that HJQ\LO is a closed subspace of
H?, the norms ||p||n2(q) and [|Apl|r2q) are
equivalent (see for instance [2], [12] and [13]
for their properties). Throughout this work,
the scalar product will be denoted by (-, -).

2.2. Setting of the problems

We consider initial conditions ug and py
such that:

u e H,  pyeH(Q)NLQ) (6)

0<m<ps<M<+o00 (7)

Let us recall the definition of the weak solu-
tion of the system (3).

Definition 2.1. Let py € H'(Q) N L™(Q),

Up € H. A pair (U, p) is said to be a solution

of the asymptotic model (3)-(4) in Q if:

p € L*(0,T; Hy(Q))NL™(Qr)NL™(0,T; Hy(Q))

(8)
UeL*0,T;V) ;pU € L>*0,T; L*(Q)%

(9)
and satisfies, Vi € D(Qr)

~ [ [pow + (U = £Vp). ]
= / pot(0, z,y)dxdy (10)

—/Q [pUd + (pU @ U — R—VU— ﬁ(Vp@)U

2F7’2/QTP diV(l/’)
+§/ div(U)V p.1 z/onUo@/)(Ow,y)dxdy
(11)

+U @ Vp)). V| -
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The following lemma guarantees the
boundedness of the density p.

Lemma 2.1. [2/(Mazimum Principle)

Let p define in 10, T[XQ, such that:

Op + div(pU) = ANAp with div(U) = 0;
p(0) =po, 0 <m < pyg <M < +o0.

Then

0<m<p(x,y,t) <M < +oo.

Now, we give the existence result of the weak
solution to the model (3).

Theorem 2.1. [2] Let ug € H; py €
H'(Q) N L*(Q).

Suppose that py > 0 almost everywhere
mn @ andog)\gﬁ.

Then, there exists at least a weak solu-

tion (p, U) of the asymptotic dispersion mass
model (3) in Q.

Next, we derive the variational formu-
lation. Assuming (p,U) is a regular solu-
tion of (3)-(4), we multiply the equations by
test functions (&,9,7) € H(Q) x Hy(Q) x
H}(Q), integrate over @, and apply Green’s
theorem. Adding the density equation to mo-
mentum with ¢ = —u.¢ and integrating by
parts the convective and diffusive terms yield
the following formulation for a.e. ¢t € (0;7T):
Find (p,U,P) € H'(Q) x V x H}(Q) such
that V(£,9,7) € H'(Q) x V x Hi(Q), we
have

<8tp7 g) + b(p, gv u)
vE e H'(Q)

C

2o (VP VE) =0,
1
(po,U, 9y + 5 (Uop,9) + alp,U,0)

Ep, U9 — (P, V) =0,

U—
+c(p e

v € Hy(Q)
d(U,m) =0, Ve Hy(Q)

% _
on

U=0, 0, on Xr

(12)

c 1

ith, P = ——(U. 2,
with, P RG(UVp)+2FT2p
Here we have used the following identity ( [4])
in the momentum equation

c c

——(UV)Vp=—-—V(UV

7o (UVIVp = =5 V(UVp)+
and the following notations:

e b(.,.,.); a(.,.,.) and ¢(.,.,.) are the

trilinear forms defined by:

C

2o V-(p(VU)),

bip.B.U) = | div(pl) e,
Vp e HY(Q)NL¥(Q), B € H(Q),

UeV (13)
a(p,U,0) = ];G(VU, V)

—Bfe/Q = M;m)(VU)t . Vid,
Vpe HY(Q) (14)

VU, 9 € Hy(Q),

o, U,9) = 5 (0 ¥)0,9) ~ ((.¥)9,0)],
Yw eV, U e Hy(Q) (15)
e d(.,.) is a bilinear form defined by:
d(U,7) = —(p,div(U)), YU €V, p,
T € Hy(Q) (16)

The trilinear forms verify the following prop-
erties of continuity, coercivity and antisym-
metry as in [3,6,7,10]:

There exists o > 0 and C' > 0 such that:

a(p,U,U) > al|VU [(q),

YU € HY(Q) (17)
a(p, U,v) < OUll gy loll a3 )

YU, v € HL(Q) (18)
c(w,U,v) < Cllwllzs@llullmy@llvllm@-
Vw € L¥(Q),VU,v € H(Q) (19)
c(w,U,v) = —c(w,v,U), Yw €V,

YU, v € HL(Q) (20)

c(w,U,U) =0, Yw € V,YU € Hy(Q) (21)
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3. The hybrid finite volume-
element method

The hybrid scheme uses a time-splitting ap-
proach: finite volume for mass conserva-
tion and finite element for momentum un-
der incompressibility. It builds on prior
work [8-10,14] for similar Navier-Stokes mod-
els.

3.1. The time splitting

Let At be the time step and t" = nAt. The
approximate variables at time t" are iden-
tified with the exponent n. Suppose that
p' and U' have been computed by an Euler
scheme. Assume also that for n > 1, p"*
and U™ ! as well as p" and U™ are known.
Now, let’s compute p"** and U™,

1. We begin by evaluating p" ™! by solving
the mass conservation equation using

a second-order Runge-Kutta scheme:

ﬁn+1_pn L1 c I
Ap TV TR = o Ap
(22)

Un-i—% _ 3Un _ Un—l

And at the boundary

) = ) = g Ve € 0Q

These two relations, (22) and (23),
result from the application of a
second-order Runge-Kutta scheme of
the predictor-corrector type (Heun’s
method) to the advection-diffusion

Vol. 9, N° 2 (2025) 88-111

equation for the density, with the veloc-
ity field frozen at the half-step U ity
The first step (22) corresponds to a pre-
diction obtained using an explicit Euler
method for the convection term and an
implicit method for the diffusion term,
whereas the second step (23) performs
the correction by employing the trape-
zoidal average of the convective fluxes,
with the diffusion term remaining im-

plicit.

2. We then calculate U™ by solving the
momentum conservation equation and
the incompressibility constraint of the

mixture using an Euler scheme.

n+l _ n
—é (Vo w) Ut + (U — U ).v)
V,On+1> _ LAUTL-H 4 Lpn—i-lvpn—y—l =0
Re Fr2? ’
V.Ut =0,
n+1 _
Ul =0,

(25)

In this relation, the density appearing in
the term multiplying the time derivative of
the velocity is taken at time step n, while
U is computed using an implicit Euler
scheme. For stability reasons, however, in
the nonlinear terms where U™ appears, it is

approximated by the extrapolation formula

Uttt =20" - U

Remark 3.1. e Following [9], it should be
noted that the velocity U™tz gn equation (24)
is an extrapolation of the wvelocity at time
(t" T — ") /2, which is necessary to achieve
second-order accuracy in the Runge-Kutta

scheme.
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e The quantity (2U™ — U"1) in equation

(25) is an explicit Euler scheme chosen to

is the barycenter, and M;, M; , M,
are the triangle vertices. M;; and
approzimate the velocity at time t" . M, are the midpoints of [M;M;,] and
. . L [M; M, ], respectively. The dual mesh
3.2. The spatial discretization Ch = {Cii € [1.1]} partitions O,

1. Construction of the mesh

Let Q C R? be a bounded polygonal
domain with boundary 0@Q, and [0, T]]
the time interval. The mass conser-
vation equation is discretized on an
unstructured triangular mesh 75, of @,
composed of L conforming isotropic tri-
angles, where L depends on the mesh
refinement.
We assume the following hypotheses:
(H1) Let {7, }1>0 be a regular family
of triangulations of Q).
(H2) The triangulation 7, is weakly
acute, meaning no triangle has an an-
gle exceeding /2.
We denote h as the spatial step of the
triangulation defined by:

h = max(h(K)) (26)

Kem,
where K represents an arbitrary trian-
gle of the triangulation 73,, and h(K)
is the length of the longest side of the
triangle K € 7y, as defined in [10].
(H3) The triangulation 7, satisfies the
following inverse hypothesis:

h<ch(K), VKenmn,

where ¢ > 0 is a constant independent
of h.

According to the reference [15], as-
sumptions (H1) and (H3) lead to the
existence of a constant ¢ > 0 indepen-
dent of h such that,

h? < ¢|K|, VK €, (27)

where | K| represents the area of K €

7. For each element K € 1,, By

where [ is the number of vertices of
K € 7,. The dual finite volume C; for
each vertex M; is a polygon formed by
connecting By to the midpoints of the
sides of K sharing M;, and completed
with boundary segments if M; € 9Q).
C; is the control volume around M;. As
a consequence, we have:
U -a-Uc.
Kem, icJ

Moreover, we have

K|
Cil= > 5 (28)
KLeK
For ¢« € J, let V(i) = {j €

J,C; is a neighbor of C;}. Let i € J
and ] S V(Z), we define Kij,l and Kij,Q
as two neighboring triangles of 7, shar-
ing the same edge. We denote B;
(resp. Bs) as the barycenter of K,
(resp. K;jo) and M;; as the midpoint
Then, we define

Fij,l = [MUBI] and Fij,Q = [MWBQ]

We also denote n;;; (resp. nyj2) as
the outward normal of C; to I';;1 (resp.
[';j2) and |y (resp. |Iyj2]) as the
length of the segment I';;; (resp. I';;2).
For any C; € Cy,, its boundary is given

ac; = | (Fij,l U Fij,2> (29)
i)

JEV(i

Thus, we have,

|

ITijal < forl=1,2. (30)
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Consequently, there exists a constant
¢1 > 0 such that:

0C;| < cth,  VieJ (31

Therefore, (5), (30), and (31) imply
the existence of a constant ¢, > 0, such
that;

Ci
0G|

>eh,  Yied (32)

. Construction of discrete spaces
The spatial discretization uses a trian-
gulation of @ C R? by a regular mesh
Tn. The velocity Uy, is discretized with
Py-Lagrange elements, and the density
pr, with piecewise constants on the dual
mesh 7;. This dual mesh allows for a
vertex-based finite volume scheme for
mass conservation. The density field
can also be viewed as a P;-Lagrange fi-
nite element field, with a value at each
triangle node.

Vi = {Uh € C'(Qn)\ : vnx € Q(K),
VK €} N Hy (Q),

M,

Vol. 9, N° 2 (2025) 88-111

Wy, = {ﬁh € C°(Qn)\ : Bux € P(K),
VK € ) HY(Q).

Here, the spaces Q(K) and P(K) are
polynomial spaces of degree p and g,
respectively. Therefore, for our simula-
tions, Q(K) =Py and P(K) = Py.
Troughout this work, we suppose the
following hypotheses [3,6,7,10, 15]:

(H4) Regularity for the data:
We suppose that Uy € Vi, po € H'(Q)
with 0 <m < pyg < M < 400 in Q.

(H5) The triangulation 73, of () and
the finite elements space W, verify the

following inverse inequality:

IV&llz2@) < ChEnl 12(), VER € Wi
(33)

(H6) Inf-sup-condition:

There exists a constant C' > 0 indepen-

dent of h, such that:

d(vh,ph) >C

inf sup
PhEWn v, evp—{0} 1Pl 2@ || VUrl 220

Fig. 1. Meshing the Q domain into triangles (See [14]).
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The following proposition establishes a
result of equivalence between the norms ||. ||,
and ||| z2(q), which is essential for deriving

the a priori estimates.

Proposition 3.1. [10] There exists con-
stants ¢1, ¢y > 0 such that Yh € (0, hy),

eullBlir2@) < 1Bl < &llBllz2@), V8 € W

3.3. The finite volume scheme

Using the density flux determination pro-
cedure for the finite volume scheme in [10],
we obtain the finite volume scheme for the
mass conservation equation using the second-
order Runge-Kutta scheme as the temporal
derivative scheme. Thus, we have:

~n—+1 n
Pn_ — Ph nyrnts € Asntl
Ph —Fhyv. < ) — A
Ar Yt Re ™"
(34)

n+1 n
A (+)
Al —|—2 V- U,

+V- (~n+1UZ"+ )) e Ap”“ (35)

where
“n 1 3U* U* n—1
Ut =t (36)
2
v = L[ g nde (37)
= — ,r)dx
4 |Ch| Ch
and |
= — t", x)dx 38
ph |Ch’ oy p( ) ( )

With the application of the flux determi-
nation method as in [10], this gives us:

~n—+1 n
ot =p .
<hAth,§ >+bh (PhafhaUh )

+é (Vo vE) =0 (39)

Vol. 9, N° 2 (2025) 88-111

n+1
<phAtph> h> ( (meh,Uh i )

L U ) ) 4 (Vi V6

+bh(
=0

Re

where the trilinear form by, is defined by (13).
In conclusion, we define the finite volume

scheme for the approximation of the solution

(prtt, pitt) for equation (1) of system (3) as

follows:

Initialization: Let p) € W, be the ap-

proximation of the initial solution pgy, with:

1
0o _

At time step n+1: Let p; € W, and
US™2 ¢ Yy, find (70, 0Y) € Wi x W,
such that for all &, € W), we have:

n+1 n
it —p wint
<hmh’5 >+bh (rh, 072

+}T (Vi veé) =0

n+1
p p *,m
<hAth; > ( (thfh;Uh +)
*n+ n
b (76 U ) ) o o (Vo Ve
=0

Now, we examine specific characteristics of
the density in the finite volume scheme de-
Since the fi-

nite volume scheme is linear and consider-

scribed by equations (42).

ing the properties of the trilinear form by,
the existence and uniqueness of the solu-
tion (gt i) are guaranteed by the Lax-
Milgram theorem. To achieve this, the fol-

lowing results are useful.

Lemma 3.1. [7] There exists a constant
C' = C(Q) > 0 (independent of h) such that
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for all py, € Wy, we have:

1 1
IVorlls@) < ClIVenllZ2 gl Anenll 2 (g

This lemma is a form of the Gagliardo-
Nirenberg inequality used to augment the
density gradient. We can formulate in the

same way an a priori estimates for the veloc-
ity.
Lemma 3.2. [10] There exists a constant

C > 0 such that for p,3 € Wy, and Vy,, we
have:

bu(p, B, U)| < ClU|a)I Vol I8l 22 (q)-

Furthermore, we have the following

proposition:

Proposition 3.2. The two equations of (42)

are equivalent to the following equations:

N " At
E CLzJp]\/—[H = le - |C‘
JEV(i) !

2
( > §:\rﬁneﬁmp@,;a@,nmn) (43

JEV (i) I=1

~n+1 ¢ At
P T Re |Gl

At n+1 " At

n+1
M;

Z ‘szl|Gz]l pJ\/Zl7 pG\L/[ja nijl)

ki

JeV() =1

Proof. The proof follows the same lines as in
[10] to obtain the finite volume scheme with
the Euler scheme for the temporal deriva-

tive.

To obtain our results, it is crucial to
guarantee that the preceding finite volume

scheme maintains the maximum principle.

Z Tiji| Gii(Phs, > P, niﬂ)) (44)

Vol. 9, N° 2 (2025) 88-111

The proposition below asserts the L™ sta-
bility of equations (39)-(40) on an unstruc-
tured grid, provided certain angle conditions
and under an appropriate CFL condition.
These stability properties, together with the
a priori estimates established earlier, play
a fundamental role in deriving both weak
and strong convergence of the sequence of
approximate solutions.

Proposition 3.3. Let U € V), be the veloc-
ity satisfying the incompressibility condition,
and let pg be the initial density satisfying the
mazimum principle. If the condition:

0 <At <cs |gc(:i!|, (45)

are satisfy, where c3 > 0 is a constant. For
all0 < n < N — 1, there exists a unique
discrete solution (,OZH,,OZH) for the finite
volume scheme (39)-(40) that satisfies the
pointwise estimates:

0<m< ot < M < 400
and 0<m <t <M < 4o0.

Proof. We can rewrite equations (42) fol-

lows:
ar (A, 6n) = (&),
as (P, 6n) = 12(6n),

ar (™ 6) = (&)
+2L T V8,

C(A:H &) = (i) (46)
+ e (VAT V).

ll(fh) = _Atbh (phagha UI: e ) )

) = 5 (b (1.6, 057%)

o (176005
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We need to show that the bilinear forms a;
and as and the linear forms [; and [, satisfy
the conditions of the Lax-Milgram theorem,
i.e., a; and as are continuous and coercive,

and [y and [, are continuous.

For the coercivity of the bilinear forms a;

and a,, we can write:

sl sl i1 g1\, CAL
ar(pp pn ) = <Ph s Ph >+Re

= 15r 1720 + o Hvﬁ"HHL?(Q)

cAt
: ~n+1|2
> min (1, Re) 1m0

Similarly,

alei i) = <PZ“, o) + 2 (vt v

Re
= ||pn+1||L2(Q) + = ||vpn+1||L2(Q)

) cAt
2> min (1, Re) | h+1||H1

This describes the coercivity of the bilinear
forms a; and as.
For continuity, using the Cauchy-Schwarz

inequality in the form:
(ac+ bd)? < (a® + b*)( + d?),

where a, b, ¢ and d are positive real number:

cAt

(60l = | (7 ) + 0 (T, V6

. cAt .
< [l leslde + G2 [ VA Vel
< Clan lmllénllm @) (49)

Similarly,

las(pp ™, &)| = ‘< (SRS >+$<Vp el V§h>‘

</ ’pn+1”5h|d:€—|—7/ ’V,OnHHV&L]dx

< Clo N mlénlla @) (50)

(Vptt Vit

(47)
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where C'is a constent dependent of ﬂ We
conclude that the bilinear forms a; aend as
are continuous. For the continuity of the
linear forms [; and [y, we use Lemma 3.2,
which essentially shows the continuity of the
bilinear form b, and, consequently, the conti-

nuity of the linear forms /; and /5. We have:

(&) = |Atbu(pp, &, U2
*n+2
< AC|U, 2 el Vok L@ 1énl 2@
*n+2
< AtCNU," 2@ Vonllza@ Akl L2 of51)
and

At *n 1 -n *,N %
1l2(&n)| = | (bh(Phyﬁh, Ty 4 on(ppt, &, Uy i ))‘

zﬁt n+3 n
¢ (1L lw@IVeln@lélee)

AAt *n+ ~n
+ 50 (10 sl VA el )

(48) < 7cnU;’”*%

) 1A 220

Y o)
Obviously, relations (5) and (32) directly
imply relation (45).

(IVohllza)

Therefore, the conditions required for the
application of Lax-Milgram’s theorem are es-

tablished. So, there exists a unique solution

n+1 n+1
(ph y Ph,

pointwise estimates:

) for the system (42) satisfying the

0<m< ottt < M < +o0

and O<m§ﬁZ+I§M<—|—oo.

3.4. The hybrid finite volume-finite
element scheme

The hybrid scheme combines finite vol-
umes for mass conservation (two-step Runge-
Kutta) and finite elements for momentum.
The velocity temporal derivative uses an
Therefore, let’s define the

numerical scheme as follows:

Euler scheme.
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Initialization: Let (o}, U;) be the approxi-
mation of (p°, U°) for h sufficiently small.
At time step n+1: Let (p, U}') € Wy X V.

Find (g i) € Wi, x W,
such that V&, € Wh;

gl — o *,n
<phph7£h>+bh phagthh i )

At

~n+1 _

+? (Vi ve,) =
n+1l
p 1 *n+5

< h At ’ > 2( (phvfhaUh )
+bh 7£h7 Uh 2)

n+1 o
+R— <vp Vé) =0

Letpp™ € Wy, find U € V),
such that V(ﬁh,ﬂ'h> € Vh X Vh :

Un+l Uh
—— 0
L (o™ — i +1
Er_ Phpntl g
2( Ar Un e
+a pn+1 Un+1 ﬁh)
nlrntl _ € o ontl pmtl 19)
+c(pp U Revﬂh U h
— (P, V) =

n) =0

+

(V-Uptt«

UZLL+1|ZT =0

Equations (53) involve solving two linear

systems to obtain (gp ™, pi ™t UT). First,

~n+1 n+1
(Pn s ph

for the convection-diffusion equation, with
*,n-l—%
Uy,

U, "+l g solved with finite elements for the

momentum conservation equation, ensuring

) is computed using finite volumes

as the velocity approximation. Then,

(53)
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incompressibility.
Now let Ay, : Wy, — W, be the linear form
defined by:

— (Anpn; &n) = (Vpn, V&), V& € W,

Then, the finite volume scheme can be refor-

mulated as follows:
ntl _n *,1
(“A;%§>+m@m&ﬂh*)

_é < hﬁerla £h>

n+1 n
P — P g
<hAth)§h> (bh <ph7§h7Uh )
+bh (~n+1 €h7 U;; nts ))
o (Bnpt ) = 0(55)
In the next section, we prove the well-

0 (54)

posedness of the discrete problem (53) and
establish the discrete energy estimate for the
hybrid scheme, independently of the discrete

parameters.

4. Main results
Now, we give the main results of this paper.

Theorem 4.1. Let (py at, Unat) be a pair of
discrete solutions of (53). When the param-
eters (h, At) tend to zero, then (pn.at, Un.at)
converges to (p,U) according to Definition
2.1, under the following conditions:

Og)\gﬁandO<At§coh.

The following subsections are devoted to

the proof of this main result.

4.1. Uniform estimates

Here, energy estimates for velocity and den-
sity projections are derived using the discrete
Laplacian of density.

Throughout this section, the symbol C' will
denote a generic positive constant, which
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may vary from line to line or from one esti-
mate to another. Unless otherwise specified,
this constant is independent of the discretiza-
tion parameters (such as At, h, etc.).

Proposition 4.1. There exists a unique
solution (pp, pp ™t UMY for the discrete
problem (53) satisfying the following inequal-
ities:

H\/p’i“Uﬁ“H% = I/ PRUR Iz (o)

+[[\/ PR Uyt = Up) HLQ(Q)+2N1HVUI?+1HL2

< Cq (56)
~n+1 ni2 ~n+1
IV o, HL2( = IVoullz2) + IV (Ah
—o 2@ + 1AwA; 720
n+ n+ n
< CQAtHUh 2||L2 ”VUh ’ ||L2 ||v10h||%2(Q)
+7||APZ||%2(Q) (57)

HVPnHHLQ(Q) - HVpZH2L2(Q) + IV (ot
+||Ahph+1||%2(Q)
n+3i
< CiAH U, 2 3200
Ozl R s o B (1l
+ 18071320 (58)

where F'r and Re are the Froude and

- PZ)H%%Q)

+
Ivo,™ 2||L2

Reynolds numbers respectively, M,Csy, Cs,
and Cy are positive constants independent of
h, At, and n.

Proof. For the proof of the first inequality
(56), we take ¥, = 2AtU™ in equation
53)., using the following equalit
(53)3 8 g y
)= lIBlIZ ()

and the properties of trilinear forms a and ¢,

(@ —=b,2a) = flall72q +Hla=bllZ2 ()

we obtain:

Ve U 22
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s = I orU 20
HI PR U = U320y + 200 VU |32,
< 2AL (Pt VU (59)

for the right-hand side of
(59), we use the discrete maximum principle,

Moreover,

Holder’s, Young’s and Poincaré’s inequalities
to obtain:

Z(Upt vt

(P, vty = /Q

Re
+oma ()| VU de
< B2 U @ U7 @l V6 s
2]\4FCIQNHWZHHL%Q)HVU;?“HL?(Q)
N T e T A T
R (1961 iy + IV ) (60)

Then (59) becomes:

H\/pZ“Uﬁ“Iliz = IYehUi 22 @)
HIV o (U = Uiliz2) + 204At||VUf?“||L2
2AtCQC

VU 2@l @ IV @

MClAt
Fr?

(HVPZHH%Z(Q) + HVU;LLH”%%Q)) (61)
For the following of this proof, we set:

Iy = [l ™! n+1||L2

—IVerUR 1220)
+l\/ Pk Uptt —Up) ||L2(Q)

Using Gagliardo-Nirenberg inequality, a.e

107 7 q

) < GIVUT 2@l U 2 @)
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Poincaré inequality and Sobolev embedding

for velocity, the previous inequality gives:

Il + 20{At|’VUf?+1H%2(Q
2AtClc
Re

||VU}?+1||L2 cg)HVPZJrl||L4
MOQAt
Fr2?
< 2G[|VU M |72
MC5At
Fr?
Which gives us:

(V0 1220y + IV UR g
IV05 2y

+

L+ 2 VU 32y (@t = Col| Vo ls(q)
_MCQAt < MCyAt
2Fr2 | = Fr?

Since pptt € W, € HY(Q) and H'(Q) —
L*(Q) then, inequality (62) becomes:

H\/pZ“ Uy z2@) = I erUR Z2(0)

+HIVor (U = Uiz >+2u1HVU}Z“HL2

Vo 2 (62)

MCAt
2Fr2

with M1 = alAt — (31(32 —

Therefore, we deduce:

Ve U 22

This concludes the proof of inequality (56).

For the second inequality, we take

& = —AtALp T in (54) to obtain:

IV o 1720
20At

||Ah:5n+1 ||L2( - 2Atbh (phv Ah ~n+17

UZ7n+2> = [2

(V08 W) + VU 2y -

< C37

)= I orUm 20y + I op (U

—U|720) + 2NIHVU£+1”L2(Q) <G (63)

||v10h||L2(Q) + V(! - PZ)H%?(Q)
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Using Lemmas 3.1 and 3.2, as well as the
Young’s inequality, we estimate the right-
hand term I, in (64) as follows:

*n—‘r n
|| < 20, AU, 2 s IV o s 1 285 2
CAt -n C(1 RGAt * TH‘ 3 n
< Rf”A +1HL2 7”Uh HL4 HvPhH%‘l(Q)
cAt - ClR@ *n+ L n
< SRIARE: + TEE AU ) IV AR 2@
[AYZR VR (65)

Finally, using Young’s inequality and
Lemma 3.1 for the velocity, (65) becomes:

cAt ~ cAt
[I2] < 7||AIOZ+1HL2(Q 7||APZ||%2(Q)
AU 2 VU2 220 | V2o ) (66)

Combining (64) and (65), we obtain (57).
Following the same manage as for (57), we
obtain (58) by taking &, = —AtAupit! in
equation (55). Thus, we define:

I = by, (ph+1 Ahanrl U;: n+g ) ’

I4 == bh (pz, Ahph U;: e ) .

Therefore, equivalently to inequality (66), we

have:
cAt n cAt n
sl < S 1A% Mz + fllAphlliz@)
+03At||Uh "“HLz(Q)nv 2, 0 IV R (67)
cAt cAt
n+1
[ < S l1Aw; 120 + 5o
AU oo VU2 2 [V 2 (68)
By adding (67) and (68), we obtain:

5 120 22 )

cAt .
3] + [ L] < i||AP 220 + (HAP i)
*n+i *,n+1
+HAthL2(Q)> + CLAL| U, 2 HL2 HVUh ’ HL2
(||Vﬁ2+1“%2(Q) + ||VPZ||L2(Q)) (69)

By associating (69) with the equivalent of
(64), we obtain (58).

Page 100 of 111



G. Zongo et al. / RAMReS Sciences des Structures et de la Matiére

To establish the global stability of the
scheme (53), we can derive estimates for
the velocity and enhanced regularity for the
density using Proposition 4.1. and discrete

Gronwall’s lemma.

Lemma 4.1. Let Uy € V; p € H'(Q), then
the solution (pyt, pp™t UMY for the dis-
crete problem (53) satisfies the following es-
timates:

(Z)Or<na<XN||Uh||L2 <G

(i) Z VU 72 < €

n=0

N-1
(447) Z |Up* - U}?”%Q(Q) < C;

(iv) max (|Vefllz@) < C;

(v) max (HvﬁhH“LZ(Q)) < C;

0<n<N
N-1

(vi) D At|AG[72g) < C;
o

(vid) 3 AllAKE 22 < C:

n=0

Z 1+ = pRll320e) < C:

(iz Z lopt! — /JZH%?(Q) <,

where C' > 0 is a constant depending on the

initial conditions (po, U, but indepen-

=)
R
dent of h, At and n. ‘

Proof. Starting from the first inequality of
Proposition 4.1., we have:

H\/PZ“U}’ZHH%2 ) — W erUi 720
+||\/ uptt = up) ”L2

+2M1HVUh+1HL2(Q) < C37

since ppt! < M and U}, U}" are known
and in Hy(Q), by summing from 0 to N — 1,
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we recover estimates (i),(i7), and (7i).

For the remaining estimates, we start from
the second inequality of Proposition 4.1.
Considering the characterization of the ve-
locity U *1t3 ip equation (32) and the prop-
erties of the density, we can rewrite this
inequality as follows:

IV 22 0) = IV Z20) + IV = o) 17200
+AtHAhﬁZ+l 1720)

*,n—&-l *,n—l—l n
< Gy AU 2 12 IVU 2 1122 IV 011|720
1 n
+§|’A/)h||%2((g) (70)

*n+i *,n+1
Thus, with U, 2 and VU, 2 in H}(Q);
1ApulIz2Q) < éllpnllizg) and ph™ < M in-
equality (70) becomes:

IVor ) — IV PR IZ2) + IV (51T = P72
+At|[Ay ﬁnHHm(Q) <C (71)

Summing (71) from, 0 to N — 1 and using
Gronwall’s lemma, we obtain estimates (iv),
(vi) and (viii). Following the same process
and using estimates (iv) and (vi), we also
find estimates (v), (vii) and (ix).

Finally, based on Lemma 4.1, we deduce

the following result:

Corollary 4.1. Under the assumptions of
Lemma 4.1, the following estimates hold:

N N
> ||VPZ||Z}J4(Q) <Cand ||V:52+1||4L4(Q) <C,
= n=0

where C' > 0 is independent of h and At.

Proof. This result is a direct consequence of

Theorem 3.1 and Lemma 3.1.

4.2. Weak convergence

To study the convergence of the hybrid fi-
nite volume-finite element scheme (53) to
the weak solution of (3)-(4), we define the
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following auxiliary functions.

In the following, we introduce the piece-
wise constant-in-time functions defined for
by <t < tpii:

Unadt) = Urtt, Onaelt) = Uy, Unact) = Uy "2,
ph,At(t) = pz-i-l’ ﬁh,At(t) = ﬁZ_Hv ﬁh,At( ) 10
In addition, we define pp o+ € C([0,T], Wh)

as the piecewise linear (continuous-in-time)

function given on each interval [t,, t,1] by:

n+1 n

) il L P o
Prac(t) = pptt + hT (t —tns1).

Using Lemma 4.1 and Corollary 4.1, we
arrive at the following result (see [3], [6]

and [7]):

Lemma 4.2. The following estimates (in-
dependent of h and At) hold:

{Un.acynne, {0natbnaes {Unainacare bounded in
L>(0,T; L*(Q)) N L*(0,T; Hy(Q)) (72)

{pn.actnae {Pnattnae {Pnattnae are bounded in
L=(0,T; HY(Q)) N L™(Qr) N L*(0,T; H*(Q))73)

{Vonnattnats {VPnatthar are bounded in
LY0,T; LY(Q)) (74)

Also,

HUh,At - (//\vh’At“%z(O’T;Lz(Q)) S CAIf and
lon.at = PradllFzo.rm @) < CAL
| Pn,ae — ﬁh,At||%2(07T;H1(Q)) < CAt (75)

Thanks to the a priori estimates
of Lemma 4.1, and in view of
the bounds established in Lemma
4.2, we know that the families
{Un.atbn,ats {Uh,At}h,Ata {ﬁh,At}h,Aty {pn.at}nac
{ﬁh,At}hAt, {ﬁh,At}h,At are uniformly

bounded in the appropriate functional spaces.
By weak compactness, we may thus extract
sub-sequences, still denoted in the same
way, that converge weakly to some limit
functions U, U, P, p, p. Moreover, from
the discrete relation (75), the limits satisfy
U="1U, p = p,: p= p. We can therefore
state the following result (see [7, Lemma 5.3]
for the proof).

Lemma 4.3. There exists sub-sequences

of  {Unattnae {Unattnae,  {pnacthas

{ﬁh,At}h,At; {ﬁh,At}h,At; {vph,At}h,At and

{Vonat}tnae and functions U, p satisfy-

ing the following weak convergences, as

(h, At) — (0,0):

Unae = U, Upae = U, Upae — U
L*(0,T; Hy(Q)) — weakly
L®(0,T; L*(Q)) — weakly — x

Phat = Py Phat = Py Phat —> Py P> P
L>(0,T; HY(Q)) — weakly — *

in  L®(Qr) — weakly — (77)
L*(0,T; H*(Q)) — weakly

Vpnat — Vp, Vp— Vp

in L*(0,T; LY(Q)) (78)

(76)

4.3. Strong convergence

For nonlinear systems, strong convergence
of the hybrid scheme (53) is key to handling
nonlinear terms. We establish compactness
for both discrete density and velocity.

Proposition 4.2. The following estimates
hold:

~n 4/3
Zn = ol < C.

n 4/3
(12 Z o™ Ph”L/2(Q <C,

where C' > 0 is a constant depending on the
initial conditions (po, Uo) but independent of
h, At and n.
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Proof. For estimate (i), we follow the proof
of Proposition 4 in [10]. In (54), we use
Lemma 3.2, the Cauchy-Schwarz inequality,
and the Sobolev embedding Hy(Q) C L*(Q)

for all & € Wy
— Ph

~n—+1 n
Ph_ = Pn
< At ) §h>

C
1€l z2) + EHAhPhHHm

*,M 1 n
< COIVU" 2|2 IV Pbll e @)

1€l 220

ot = o .
<At,§h> < (CIVU"*2 |20 IV P 1)
18 ) €l (79)
it = pn
Knowing that ~——"" ¢ W, ¢ L*(Q) and

using continuity, from (79) we deduce:
Pt — ph
At

CC2

nti 7
< C|vu* +2||L2(Q)||Vph||L4(Q)
L2(Q)

HAhﬁ"H 22(0) (80)

Using the Minkowski inequality and sum-
ming (80) forn =0, N — 1

N-— 4/3
Z?

1, we obtain:

N—1
*,M 4/3
<C Z VU314,
L2(Q)

4/3
A +0(R)

~n+1
- Ph

4/3N 1
n 4/3
Z ARG 1)

Finally, applying the Holder inequality, the
estimates provided by Lemma 4.1 and Corol-
lary 4.1, we directly obtain the desired result,
i.e., estimate (i).

For estimate (ii), following the same manage
as in the proof of (i), we obtain the following
inequality, similar to (80):

Pht = o :
|22 < (ivo el Viloa
L2(Q)
CC2 ~n+1 x4+
Lo llAns; ||L2(Q)> + (C'zHVU 2|l 2@
CCQ
7 s + L2 Aue oo ) (81)
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Thus, we have, by using the same argu-

ments as for (i):

N— n+1_p 4/3 N-1 4
Z PP <o Y IVUt ik
= t L?(@) n=0
IV ol s ZH WP 120
c \4/3 N1
n+14/3
+(Re) P LA
N—-1
*, 1 4/3 ~n 4/3
+Cy S VU2 o) IV gy (82)
n=0

With (82), we can conclude the estimate
(ii).
Corollary 4.2. From Proposition 4.2, we

deduce the followmg estimate:

<C
L2(0,T5L%(Q))

(83)

H Ph At

From (83), we can derive the following
strong convergences for the density, thanks
to a compactness theorem of Aubin-Lions
type (see [13]):

Ph.At = Py PhAt = Py Phat = Py Phat — P

in L*(0,T; L*(Q))-strongly as (h, At) — 0 (84)

Moreover, according to Lemma 4.1, the
discrete density is bounded in L*(Q7), so
we also obtain strong convergence in L”(Qr)
for p < oco. For p = oo, we can deduce
convergence for at least a sub-sequence of
Ph.Ats Ph,At, OT Pp.ar tO p almost everywhere
in (t,x) € Qr.

We now estimate the fractional temporal

derivative for the discrete velocity.

Proposition 4.3. The following estimate
holds:

T—5
/0 pr.at(t +0) (Upar(t+6)

_UhAt(t))Hi%Q) dt < 051/2
Vo:0<d<T,

(85)
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where C' > 0 is independent of (h, At,?).

Proof. Since pp a¢ and Uy s are piecewise
constant functions, to obtain (85) it suffices

to consider ¢ as a multiple of the time step

At, that is 6 = rAt with »r =0,--- , N and
to prove
2
m+r m+r _ Um
(v Y) L@
< C(TAt)l/Q (86)

Firstly, we write the time derivative to the
momentum equation (53), in a conservative
form. It is obtained by adding to both sides
of (53), the term,

1 /o™ = pp 1
Ut gy
2 < At "

So we obtain the following from (53), by tak-

ing as test function 9, = U;"*"

this identity :
(U — g U Ut = Up)
:< mr <Um+r Uh> Ut — Ul'gn>
+ (o = o) U U™ = Ugr)

multiplying by At and summing for
=m,-- -1+

H /pZH—r m—i—r ) o
<(P2n+r — Ph ) Uy Up™ — UIT>

m—1+r
At Z+ ( antdfian —inZH Ufian 79h>

— U}, using

2

Re
m— 1+r

AL Y (P V)

—Atm§:+ra( RN VAERTY

nmml—l—r anrl
At Z < k

On the other hand summing for n =

ph Un+1 '19h> (87)

m,---,m—r+1, multiplying by At and tak-

m-—+r

ing &, = p),' — pp'"" as a test function in the

- C(rAt)'/?
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density equation (53),, we obtain the follow-
ing, using the properties of the trilinear form

b, as well as Holder’s and Cauchy-Schwarz’s

inequalities.
m+r 2 At ™ L *"H‘
= <5 S (0 @l Vil

S At m—1+r *TH—
o = o+ ) + 5 3 (105" e

2

n=m

2 m—14r

IV7 sy o = o lo@) + 5 2

n=m

|AwAE 2@l = Pt 2 ) -

. CAt m—1+r *n+ .
e < 5 3 (0 e 190 @)
CAL™ T it - 2eAL M
g 2 W @A e + T 3 18w ey

n=m

m—1+r 1
n+5 n *,71,+7
(At > U @l Vehlzie + 10 @I VA i

n=m

cAt m—1+r /2 /fm—14r 1/2
oo 2 1A e ) (Z At)

n=m

< C(rAt)l/z.

- 2
Therefore,
a7 = o g < CrAnY? (5)

Multiplying (87) by At, summing for m =
0,---, N —r and bounding adequately, we
can obtain the required bound (86). So we

have:
N-—r - N 2 5
At / m T Um r_pym < Jz
mzzo ( " ) L2Q) ;| |
(89)

Now, we show that each |J;| can be increased
by C(rAt)Y2. In the following, we will prove
J1 and Jy; the others are handled in the same
way. For more details, the reader may refer
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to [3]. For Ji, we use (88) to obtain:

N-—r
S <At Y on = o @U@ U = Uy llzso)
m=0
N—r 1/2
< m o m+r m||2
< max o’ = o |l <At§0 1UR ||L4(Q)>

N—r 1/2
X (At oo - UIT”%‘l(Q))
m=0

< C(rAt)t? (90)
For J; we have:
N—rm—1+r c
n< o 8 (0 e
m=0 n=m €
<V o @O = Uil 2@
M T m-+r m
+ AV @IV~ Ul
e 1 1
<COAtY (RGHU;’Z+ 1@ Vol e
m=0
+%HV P X zn: At||UT
Fr2 Ph L*(Q) h

m=n—r+1

1/2 7 1/2
m=n—r+1
N-—r

C n
Y (8t 10 e

m=0

< C(rAt)'/? (
) M . o\ 1/2
196 s + s Vo8 20)) |

Ner 1/2
X (Z At) < C(rAt)2,
m=0

with
0 if n<O,
n=<n if 0<n<N-—7
N—r if n>N—r,

and |0 —n [ 1| <r. This completes the

proof of Proposition 4.3.

Finally, based on the result and thanks
to the Aubin-Lions type compactness (see
[ [16], Theorem 5]), we obtain the following
strong convergence for the velocity.
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Corollary 4.3. Let U, A and Uh,At be the
piecewise constant functions taking values
in UM and U} respectively. Following the
previous proposition, we have the following
convergences, as (h, At) — (0,0):

Unae = U, Uy = U

in  L*(0,T; L*(Q))-strongly (91)

4.4. Passing to the limit

We aim to show that the approximate so-
lution (gt pitt UM1), obtained from the
hybrid finite volume-finite element scheme
(53), converges to the weak solution (p,U)
of the Kazhikhov-Smagulov model (3)-(4) as

h and At tend to zero.

For mass conservation, the limit transi-
tion for the finite volume scheme (42) as
(h, At) — (0,0) is detailed by Feistauer et al.
(see [ [17]], section E). However, in our case,
the velocity in the convective part depends
on (h,At).
following strong-weak convergence result.

To address this, we use the

Lemma 4.4. (See [10]) Let (v,), €
L*(0,T3 L*(Q)) and (na)n € L*(0,T: HY(Q))
such that v, — v in L*(0,T;L*Q)) —
strongly and n, — n on L*(0,T; H(Q)) —
weakly, then for any ¢ € C*([0;T]; H(Q)),
such that ¢(.,T) = 0, we have:

T T
/ / vV nbdadt — / / v.Vnédadt
0 JQ 0 JQ

as n — oo. (92)

To take the limit in the momentum con-
servation equation, we select a suitable test
function v € C'([0,T);C°(Q)) such that
V-v = 0 and v(T,:) = 0. We define
vy as the projection of v(t") onto V. Let
vpar € L(0,T;Vy) be the piecewise con-

stant function taking the value v}t on

Page 105 of 111



G. Zongo et al. / RAMReS Sciences des Structures et de la Matiére

(", #"*1, and let vuar € C°([0,T];V4) be
the continuous piecewise linear function such
that U a¢(t") = v;. Then, as (h,At) — 0
we have:

Upat — U in L>(0,T; Hy(Q)),
pa — v in WH(0,T; Hy(Q)).

Now, we are going to write the time deriva-
tive of the discrete equation (53), in the
conservative form.

By adding the following term to the right
and the left-hand sides of (53),,

1 PZH Ph
Un+1 9
2< At "

we obtain,
n—i—lUn—l—l — nyr
< = Ph h,19h>+0(,0h+1Un+1
_évﬁfﬂ Un+1 ﬁh) +a ( n+1 Un+1 ﬁh)

n+1

1
_ (P;ZLH,VQ%) 5 <Ph N — Ph Ut 19h>(93

Next, taking 9, = v;*! as test function
n (93), multiplying by At, summing for
n=0,---,N—

discrete integration by parts in time,

1, and using the following

N-1
(U - AR ) = (0 o)
"~ N-1
=3 (U — o) — (AR08,
n=0

with v = 0; (since v(T,.) = 0), we arrive

)
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to the following conservative form:

N-1 _— UZH — N-1
—At Z <phUh7 At> + At Z a
n=0 n=0
N-1
x ( n+1 Un+l Z+1) + At Z c(pZHU,?H
n=0

c

Re
— At Z (P, Vot
n=0

VA UptL o) = (AUR of)

At S ot = on
i Un+1
M 2 < At "

n=0

n+1> (94)

Then, by using the definitions introduced at
the beginning of Section 4.2, we obtain the

following variational formulation:

T ~ Iy a ~ 0770 0
—/0 ph,AtUh,Ataavh,At — <PhUh>Uh>

T T
+/0 a (ph,At7 Uh,At7 vh,At) + /0 & (ph,AtUh,At

—LVPh ats Un,at, un At) ! /T <Uh Atgﬁh At; Un At>
N
= /T <_L(Uh at-Vpnae) + L(ph ae)%, Vuy, At> (95)
0 Re 7 ' 2Fr2> ’
Using the convergence results obtained
earlier, we can pass to the limit in the varia-
tional formulation (95) of the discrete veloc-
ity equation (53), to obtain:

T 5 T c
_/0 <pU7 tv> - <p0U07UO> + /0 c (pU - Ev/% U7 U)
T
+ [ alpU)

R T

Therefore, considering the variational for-

(UVp) +

mulation given in (12), we can deduce that
this equation is equivalent to the following
equation where we replace the test func-
tion v with a test function ¢ € D(Qr) with

QT = [O,T] X Q
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1
_ / U By ddadydt — / (pU DU — —VU
Qr Qr Re

(Voo U+U® Vp)) Vdrdydt
S
2Fr2 Jor

C
— di .pdxdydt
e [, AUV podrdy

= /q)poUggb(O, x,y)dxdy (97)

Which is equvalent to the equation
(11).Then, the limit function (p,U) satisfies
the weak formulation (11) of the Kazhikhov-

Smagulov model in the distribution sense on

Cc

Re
p? div(¢)dxdydt

(0; T'). Consequently, we conclude the proof
of Theorem 4.1.
5. Numerical Results

This section introduces two types of numer-
ical simulations to demonstrate that the

Vol. 9, N° 2 (2025) 88-111

scheme provides accurate approximations of
density and velocity for variable-density flu-
ids, exemplified by the Kazhikhov-Smagulov
equations. First, we compare the numerical
solution with an analytical solution from the
literature. Then, we examine the evolution
of L>, L? and L' errors with respect to At
and (At)?.

To do this, we consider the following system
as the analytical solution.

Pez = 2 + sin(y) cos(z) sin(t),

. (98)
U, = —4 Yy -1 @@+ 1)+ Dy -1)
—a(y =1y + 1)’z + 1)z - 1)
Here we take Q = [~1;1]*, W, = P, and
Vh — ]PQ.

Rho

Fig. 2. At left Meshing of domain @ = [~1;1]* and at right the exact density for A = 0.0301 and

n = 91772 triangles.
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U_exact(:, 1) U_exact(:, 2)
15
1.5 1.5
1
1 1
0.5 08 .
T o0 5
©
8 0
= .05 0.
-1 -0.5 -
-15 -1,
1 -1
0.5 1
0 0.5
0
0.5 05 15
Y 1 X

Fig. 3. The two components of exact velocity.

Table 1
Errors in norms as a function of A and At = 5.1072.

n (triangles) 29 45 47 88 137
h 1.7666 1.3938 1.3552 0.9880 0.7882
err-p-L'  1.35x 1077 1.40x 1077 1.39x 1077 145x 107" 1.48 x 107’
err-p-L*>  7.03x107% 7.17x107® 7.16x107°® 7.37x107% 7.51 x107®
err-p-L> 4 %1078 4 %1078 4 %1078 4 %1078 4 %1078
err-Ui-L' 283 x107% 5.73x107% 3.17x107% 1.05x 1072 4.66 x 107°
err-Ui-L*  3.62x 1072 1.69x 107! 340x107% 1.09 x 1072 4.75 x 1073
err-Up-L® 580 x 1072 7.01 x 107* 438 x 1072 1.38x 1072 5.40 x 1073
err-Uy-L' 416 x 1072 6.28 x 1072 4.51x 1072 131 x1072 6.15x 1073
err-Ups-L* 559 x 1072 151 x 107" 6.83x107% 1.55x107% 7.53x107°
err-Us-L>®  1.03x 107" 595 x 107" 1.62x 107" 343 x107% 1.64 x 1072
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Vertical Velocity

15 15

Fig. 4. Approximate solution by the hybrid finite volume-finite element method (Density,
Horizontal velocity, Vertical velocity) for At = 5-1072 ¢ = 102 and Re = 5000 with h = 0.7882.

x10° Density Error Types vs h )

U1 Error Types vs h

9 U2 Error Types vs h
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w
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Errors for U2

—©— 5L error
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LS error

Fig. 5. Evolution of errors in norms L', L? and L™ as a function of h for the density, the

horizontal velocity, and the vertical velocity respectively.

Interpretation of the results:

(i) We conducted numerical simulations to
compare the exact and numerical solu-
tions for both the density and the two
components of velocity. The simula-
tions were performed over a range of
spatial discretization values, h, varying
from 1.7666 to 0.7882. This range en-
ables us to observe the behavior of the
solutions under different resolutions,
thereby highlighting the performance
of the hybrid method.

(ii) The results of the numerical simulations
reveal significant findings regarding the

convergence of the solutions:

The errors measured in norms L'
and L? for the three different solu-
tion types consistently approach
zero as the spatial discretization
parameter h tends toward zero.
This indicates that our numeri-
cal method is converging towards
the exact solutions with increas-

ing resolution.

Additionally, the L* norm of the
two velocity components also con-
verges towards zero. This is a
positive indicator of the method’s
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accuracy, ensuring that the com-
puted velocities are reliably ap-

proximating the true velocities.

o However, it is noteworthy that
the error in the L™ norm for the
density remains stable at 4 x 107
throughout the simulations. This
behavior suggests that while the
numerical method performs well
in achieving convergence for the
velocity components, the accu-
racy for the density may require
further examination or refinement
of the method.

(iii) Several figures were generated to illus-
trate the evolution of errors as a func-
tion of the spatial discretization step h.
These visual representations provide
insightful clarity into how the errors
decrease with smaller values of h, em-
phasizing the effectiveness of the hy-
brid method across different solution

types.

6. Conclusion

The application of the hybrid finite vol-
ume - finite element method to Kazhikhov-
Smagulov type equations has proven to be
effective in producing convergent solutions
for both the density and the velocity fields.
While the method shows promising results,
particularly in the convergence of velocity
errors, additional investigation may be war-
ranted to enhance the accuracy of the density
representation. The graphical analysis fur-
ther supports these conclusions by illustrat-
ing the relationship between discretization

and error reduction.

Vol. 9, N° 2 (2025) 88-111
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