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Let us denote by V = (u, v, w) the aver-
age volume velocity of the mixture, where
U = (u, v) represents the horizontal compo-
nents of V . In this framework, Fick’s law is
expressed as

W = V − λ

ρ
∇ρ (2)

where λ is the mass diffusion coefficient. Us-
ing this relation, one can derive the following
system:

∂tρ+ V · ∇ρ = λ∆ρ

ρ
(
∂tV + (V · ∇)V

)
− µ∆V − λ(∇ρ · ∇)V

−λ(V · ∇)∇ρ+ λ2
(

∇ρ · ∇
(

∇ρ
ρ

)
− ∆ρ

ρ
∇ρ

)
+∇P = ρf

div(V ) = 0
Following the asymptotic analysis performed
in [2], this system can be rewritten in a re-
duced form involving only U = (u, v):

∂tρ+ div(ρU) = c

Re
∆ρ

ρ
(
∂tU + (U · ∇)U

)
− 1
Re

∆U − c

Re

(
(∇ρ · ∇)U

+(U · ∇)∇ρ
)

+ 1
Fr2 ρ∇ρ = 0

div(U) = 0
(3)

where ρ denotes the density, U = (u, v) is
the two-dimensional velocity vector, c = λρ̄

µ
with λ the mass diffusion coefficient, ρ̄ a ref-
erence density, and µ the dynamic viscosity
of the mixture. Finally, Re is the Reynolds
number and Fr the Froude number.
The incompressibility condition is expressed
as div(U) = 0.
To the system (3), we add the following
boundary and initial conditions:

∂ρ

∂n
= 0 on ΣT

U = 0 on ΣT

ρ|t=0 = ρ0 ; U|t=0 = U0 in Q,

(4)

where ΣT = [0, T ] × ∂Q, and Q is an open
subset of R2.
Few studies address the numerical simula-
tion of non-homogeneous Navier-Stokes equa-
tions, also known as Kazhikhov-Smagulov
equations [1]. However, existing works [3–7]
provide useful references. Most approaches
rely on finite volume or finite element meth-
ods, ensuring stability and convergence.

For instance, [4] analyzes an Euler-FEM
scheme for mass diffusion, while [6, 7] estab-
lish stability for discrete models with density
truncation. [7] also studies asymptotic be-
havior as λ → 0, leading to a weak solution.
The full model with O(λ2) terms is explored
in [3]. Hybrid schemes, combining finite vol-
ume and finite element methods, were in-
troduced by Catarina Calgaro et al. [8] for
incompressible flows and later extended to
other models [9, 10].

This work follows two main directions.
First, a hybrid scheme is developed to dis-
cretize (3)-(4), using finite volume for mass
conservation and finite elements for momen-
tum. The mass equation employs a two-step
finite volume method with a second-order
Runge-Kutta scheme, while velocity evolu-
tion follows an Euler scheme.
Let h > 0, we denote by τh a partition of Q
composed of conforming and isotropic trian-
gles. We take Wh×Vh ⊂ H1(Q)×H1

0 (Q) the
finite elements spaces associated with density
and velocity, respectively. For the simplifica-
tion of notation, we restrict our study to the
case of uniform time discretization of [0, T ].
Let N be a positive integer, then we define
∆t = T/N the time step and (tn = n∆t)N

n=0
the partition of [0, T ]. Moreover, we consider
the following stability condition:

0 < ∆t ≤ c0h (5)
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where c0 > 0 is a constant that is indepen-
dent of h and ∆t, but depends on the velocity
field U ∈ Vh. Clearly, (5) is a typical CFL
condition often used for the numerical so-
lution of conservation laws (see [11]). Let
(ρn

h, U
n
h ) ∈ Wh × Vh be the approximation of

density and velocity at time tn. We denote
by ρh,∆t and Uh,∆t the piecewise constant
functions in time taking values ρn

h and Un
h

on (tn−1, tn], respectively.
The second direction of this work aims to
demonstrate the existence of a unique solu-
tion (ρ̃n+1

h , ρn+1
h , Un+1

h ) for the scheme and
establish its convergence to a weak solution
(ρ, U) of the system (3)-(4).

Thus, this paper is structured as follows:
the first section introduces the model and
key existing results; the second details the
hybrid scheme construction using finite vol-
ume and finite element methods; the third
establishes its properties, including stability,
a priori estimates, and convergence analysis
and the last one is dedicated to numerical
results.

2. Preliminary

2.1. Notations

In this section, we define specific func-
tional spaces for the Kazhikhov-Smagulov
model and introduce the concept of weak
solution for the asymptotic model. Set

H =
{
U ∈ L2(Q)2 : U.n = 0 on ∂Q

}
and

V =
{
U ∈ H1(Q)2 : U = 0 on ∂Q

}
.

On the other hand, we consider the analo-
gous space,

H2
N(Q) =

{
ρ ∈ H2(Q) : ∂ρ

∂n
= 0 on ∂Q,

∫
Q
ρ(x) =

∫
Q
ρ0

}
,

with H2
N = ρ̄+H2

N,0(Q)

where ρ̄ = 1
mes(Q)

∫
Q
ρ0 and

H2
N,0 =

{
ρ ∈ H2(Q) : ∂ρ

∂n
= 0 on ∂Q,

∫
Q
ρ(x) = 0

}
.

It is shown that H2
N,0 is a closed subspace of

H2, the norms ∥ρ∥H2(Q) and ∥∆ρ∥L2(Q) are
equivalent (see for instance [2], [12] and [13]
for their properties). Throughout this work,
the scalar product will be denoted by ⟨·, ·⟩.

2.2. Setting of the problems

We consider initial conditions u0 and ρ0

such that:

u0 ∈ H, ρ0 ∈ H1(Q) ∩ L∞(Q) (6)
0 < m ≤ ρ0 ≤ M < +∞ (7)

Let us recall the definition of the weak solu-
tion of the system (3).
Definition 2.1. Let ρ0 ∈ H1(Q) ∩ L∞(Q),
U0 ∈ H. A pair (U, ρ) is said to be a solution
of the asymptotic model (3)-(4) in Q if:

ρ ∈ L2(0, T ;H2
N(Q))∩L∞(QT )∩L∞(0, T ;H1

N(Q))
(8)

U ∈ L2(0, T ;V ) ; ρU ∈ L∞(0, T ;L2(Q)2)
(9)

and satisfies, ∀ψ ∈ D(QT )

−
∫

QT

[
ρ∂tψ + (ρU − c

Re
∇ρ).∇ψ

]
=
∫

Q
ρ0ψ(0, x, y)dxdy (10)

−
∫

QT

[
ρU∂tψ + (ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U

+U ⊗ ∇ρ)).∇ψ
]

− 1
2Fr2

∫
QT

ρ2 div(ψ)

+ c

Re

∫
QT

div(U)∇ρ.ψ =
∫

Q
ρ0U0ψ(0, x, y)dxdy

(11)
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The following lemma guarantees the
boundedness of the density ρ.
Lemma 2.1. [2](Maximum Principle)
Let ρ define in ]0, T [×Q, such that:
∂tρ + div(ρU) = λ∆ρ with div(U) = 0;
ρ(0) = ρ0, 0 < m ≤ ρ0 ≤ M < +∞.
Then

0 < m ≤ ρ(x, y, t) ≤ M < +∞.

Now, we give the existence result of the weak
solution to the model (3).
Theorem 2.1. [2] Let u0 ∈ H; ρ0 ∈
H1(Q) ∩ L∞(Q).

Suppose that ρ0 ≥ 0 almost everywhere
in Q and 0 ≤ λ ≤ µ

4M .
Then, there exists at least a weak solu-

tion (ρ, U) of the asymptotic dispersion mass
model (3) in QT .

Next, we derive the variational formu-
lation. Assuming (ρ, U) is a regular solu-
tion of (3)-(4), we multiply the equations by
test functions (ξ, ϑ, π) ∈ H1(Q) ×H1

0 (Q) ×
H1

0 (Q), integrate over Q, and apply Green’s
theorem. Adding the density equation to mo-
mentum with ξ = 1

2u.ϑ and integrating by
parts the convective and diffusive terms yield
the following formulation for a.e. t ∈ (0;T ):
Find (ρ, U,P) ∈ H1(Q) × V × H1

0 (Q) such
that ∀(ξ, ϑ, π) ∈ H1(Q) × V × H1

0 (Q), we
have

⟨∂tρ, ξ⟩ + b(ρ, ξ, u) − c

Re
⟨∇ρ,∇ξ⟩ = 0,

∀ξ ∈ H1(Q)

⟨ρ∂tU, ϑ⟩ + 1
2 ⟨U∂tρ, ϑ⟩ + a(ρ, U, ϑ)

+c(ρU − c

Re
∇ρ, U, ϑ) − ⟨P ,∇ϑ⟩ = 0,

∀ϑ ∈ H1
0 (Q)

d(U, π) = 0, ∀π ∈ H1
0 (Q)

U = 0, ∂ρ

∂n
= 0, on ΣT

(12)

with, P = − c

Re
(U.∇ρ) + 1

2Fr2ρ
2.

Here we have used the following identity ( [4])
in the momentum equation

− c

Re
(U.∇)∇ρ = − c

Re
∇(U.∇ρ)+ c

Re
∇.(ρ(∇U)t),

and the following notations:

• b(., ., .) ; a(., ., .) and c(., ., .) are the
trilinear forms defined by:

b(ρ, β, U) =
∫

Q
div(ρU)βdx,

∀ρ ∈ H1(Q) ∩ L∞(Q), β ∈ H1(Q),
U ∈ V (13)

a(ρ, U, ϑ) = 1
Re

(∇U,∇ϑ)

− c

Re

∫
Q

(
ρ− M̃ + m̃

2
)
(∇U)t : ∇ϑdx,

∀ρ ∈ H1(Q) (14)

∀U, ϑ ∈ H1
0 (Q),

c(ω, U, ϑ) = 1
2
[
((ω.∇)U, ϑ) − ((ω.∇)ϑ, U)

]
,

∀ω ∈ V, U, ϑ ∈ H1
0 (Q) (15)

• d(., .) is a bilinear form defined by:
d(U, π) = −(p, div(U)), ∀ U ∈ V, p,

π ∈ H1
0 (Q) (16)

The trilinear forms verify the following prop-
erties of continuity, coercivity and antisym-
metry as in [3, 6, 7, 10]:
There exists α > 0 and C > 0 such that:

a(ρ, U, U) ≥ α∥∇U∥2
L2(Q),

∀U ∈ H1
0 (Q) (17)

a(ρ, U, v) ≤ C∥U∥H1
0 (Q)∥v∥H1

0 (Q),

∀U, v ∈ H1
0 (Q) (18)

c(ω, U, v) ≤ C∥ω∥L3(Q)∥u∥H1
0 (Q)∥v∥H1

0 (Q),

∀ω ∈ L3(Q), ∀U, v ∈ H1
0 (Q) (19)

c(ω, U, v) = −c(ω, v, U), ∀ω ∈ V,

∀U, v ∈ H1
0 (Q) (20)

c(ω, U, U) = 0, ∀ω ∈ V, ∀U ∈ H1
0 (Q) (21)
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3. The hybrid finite volume-
element method

The hybrid scheme uses a time-splitting ap-
proach: finite volume for mass conserva-
tion and finite element for momentum un-
der incompressibility. It builds on prior
work [8–10,14] for similar Navier-Stokes mod-
els.

3.1. The time splitting

Let ∆t be the time step and tn = n∆t. The
approximate variables at time tn are iden-
tified with the exponent n. Suppose that
ρ1 and U1 have been computed by an Euler
scheme. Assume also that for n ≥ 1, ρn−1

and Un−1 as well as ρn and Un are known.
Now, let’s compute ρn+1 and Un+1.

1. We begin by evaluating ρn+1 by solving
the mass conservation equation using
a second-order Runge-Kutta scheme:

ρ̃n+1 − ρn

∆t +∇· (ρnUn+ 1
2 ) = c

Re
∆ρ̃n+1

(22)

ρn+1 − ρn

∆t + 1
2
(
∇ · (ρnUn+ 1

2 )

+∇ · (ρ̃n+1Un+ 1
2 )
)

= c

Re
∆ρn+1 (23)

with

Un+ 1
2 = 3Un − Un−1

2 (24)

And at the boundary

ρ̃n+1(x) = ρn+1(x) = ρn+1
|
∑

T

, ∀x ∈ ∂Q.

These two relations, (22) and (23),
result from the application of a
second-order Runge-Kutta scheme of
the predictor-corrector type (Heun’s
method) to the advection-diffusion

equation for the density, with the veloc-
ity field frozen at the half-step U∗, n+ 1

2 .
The first step (22) corresponds to a pre-
diction obtained using an explicit Euler
method for the convection term and an
implicit method for the diffusion term,
whereas the second step (23) performs
the correction by employing the trape-
zoidal average of the convective fluxes,
with the diffusion term remaining im-
plicit.

2. We then calculate Un+1 by solving the
momentum conservation equation and
the incompressibility constraint of the
mixture using an Euler scheme.



ρn

(
Un+1 − Un

∆t +
(
(2Un − Un−1).∇

)
Un+1

)

− c

Re

((
∇ρn+1.∇

)
Un+1 +

(
(2Un − Un−1).∇

)
∇ρn+1

)
− 1
Re

∆Un+1 + 1
Fr2ρ

n+1∇ρn+1 = 0,

∇ · Un+1 = 0,

Un+1|∑
T

= 0.
(25)

In this relation, the density appearing in
the term multiplying the time derivative of
the velocity is taken at time step n, while
Un+1 is computed using an implicit Euler
scheme. For stability reasons, however, in
the nonlinear terms where Un+1 appears, it is
approximated by the extrapolation formula
Un+1 = 2Un − Un−1.

Remark 3.1. • Following [9], it should be
noted that the velocity Un+ 1

2 in equation (24)
is an extrapolation of the velocity at time
(tn+1 − tn)/2, which is necessary to achieve
second-order accuracy in the Runge-Kutta
scheme.
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• The quantity (2Un − Un−1) in equation
(25) is an explicit Euler scheme chosen to
approximate the velocity at time tn+1.

3.2. The spatial discretization

1. Construction of the mesh
Let Q ⊂ R2 be a bounded polygonal
domain with boundary ∂Q, and [0, T ]
the time interval. The mass conser-
vation equation is discretized on an
unstructured triangular mesh τh of Q,
composed of L conforming isotropic tri-
angles, where L depends on the mesh
refinement.
We assume the following hypotheses:
(H1) Let {τh}h>0 be a regular family
of triangulations of Q.
(H2) The triangulation τh is weakly
acute, meaning no triangle has an an-
gle exceeding π/2.
We denote h as the spatial step of the
triangulation defined by:

h = max
K∈τh

(h(K)) (26)

where K represents an arbitrary trian-
gle of the triangulation τh, and h(K)
is the length of the longest side of the
triangle K ∈ τh, as defined in [10].
(H3) The triangulation τh satisfies the
following inverse hypothesis:

h ≤ ch(K), ∀K ∈ τh,

where c > 0 is a constant independent
of h.
According to the reference [15], as-
sumptions (H1) and (H3) lead to the
existence of a constant c > 0 indepen-
dent of h such that,

h2 ≤ c|K|, ∀K ∈ τh (27)

where |K| represents the area of K ∈
τh. For each element K ∈ τh, BK

is the barycenter, and Mi, Mj1 , Mj2

are the triangle vertices. Mij1 and
Mij2 are the midpoints of [MiMj1 ] and
[MiMj2 ], respectively. The dual mesh
Ch = {Ci, i ∈ [1, I]} partitions Q,
where I is the number of vertices of
K ∈ τh. The dual finite volume Ci for
each vertex Mi is a polygon formed by
connecting BK to the midpoints of the
sides of K sharing Mi, and completed
with boundary segments if Mi ∈ ∂Q.
Ci is the control volume around Mi. As
a consequence, we have:⋃

K∈τh

= Q̄ =
⋃
i∈J

Ci.

Moreover, we have

|Ci| =
∑

K,Mi∈K

|K|
3 (28)

For i ∈ J , let V(i) = {j ∈
J, Cj is a neighbor of Ci}. Let i ∈ J

and j ∈ V(i), we define Kij,1 and Kij,2

as two neighboring triangles of τh shar-
ing the same edge. We denote B1

(resp. B2) as the barycenter of Kij,1

(resp. Kij,2) and Mij as the midpoint
of [MiMj].
Then, we define

Γij,1 = [MijB1] and Γij,2 = [MijB2].

We also denote nij,1 (resp. nij,2) as
the outward normal of Ci to Γij,1 (resp.
Γij,2) and |Γij,1| (resp. |Γij,2|) as the
length of the segment Γij,1 (resp. Γij,2).
For any Ci ∈ Ch, its boundary is given
by

∂Ci =
⋃

j∈V(i)

(
Γij,1 ∪ Γij,2

)
(29)

Thus, we have,

|Γij,l| ≤ h

2 for l = 1, 2. (30)
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Consequently, there exists a constant
c1 > 0 such that:

|∂Ci| ≤ c1h, ∀i ∈ J (31)

Therefore, (5), (30), and (31) imply
the existence of a constant c2 > 0, such
that;

|Ci|
|∂Ci|

≥ c2h, ∀i ∈ J (32)

2. Construction of discrete spaces
The spatial discretization uses a trian-
gulation of Q ⊂ R2 by a regular mesh
τh. The velocity Uh is discretized with
P2-Lagrange elements, and the density
ρh with piecewise constants on the dual
mesh τ ∗

h . This dual mesh allows for a
vertex-based finite volume scheme for
mass conservation. The density field
can also be viewed as a P1-Lagrange fi-
nite element field, with a value at each
triangle node.

Vh =
{
uh ∈ C0(Q̄h)\ : vh|K ∈ Q(K),

∀K ∈ τh} ∩H1
0 (Q),

Wh =
{
βh ∈ C0(Q̄h)\ : βh|K ∈ P(K),

∀K ∈ τh} ∩H1(Q).

Here, the spaces Q(K) and P(K) are
polynomial spaces of degree p and q,
respectively. Therefore, for our simula-
tions, Q(K) = P2 and P(K) = P1.
Troughout this work, we suppose the
following hypotheses [3, 6, 7, 10,15]:

(H4) Regularity for the data:
We suppose that U0 ∈ Vh, ρ0 ∈ H1(Q)
with 0 < m ≤ ρ0 ≤ M < +∞ in Q.

(H5) The triangulation τh of Q and
the finite elements space Wh verify the
following inverse inequality:

∥∇ξh∥L2(Q) ≤ Ch−1∥ξh∥L2(Q), ∀ξh ∈ Wh

(33)
(H6) Inf-sup-condition:
There exists a constant C > 0 indepen-
dent of h, such that:

inf
ph∈Wh

sup
vh∈Vh−{0}

d(vh, ph)
∥ph∥L2(Q)∥∇vh∥L2(Q)

≥ C.

Fig. 1. Meshing the Q domain into triangles (See [14]).
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The following proposition establishes a
result of equivalence between the norms ∥.∥h

and ∥.∥L2(Ω), which is essential for deriving
the a priori estimates.

Proposition 3.1. [10] There exists con-
stants ĉ1, ĉ2 > 0 such that ∀h ∈ (0, h0),

ĉ1∥β∥L2(Q) ≤ ∥β∥h ≤ ĉ2∥β∥L2(Q), ∀β ∈ Wh.

3.3. The finite volume scheme

Using the density flux determination pro-
cedure for the finite volume scheme in [10],
we obtain the finite volume scheme for the
mass conservation equation using the second-
order Runge-Kutta scheme as the temporal
derivative scheme. Thus, we have:

ρ̃n+1
h − ρn

h

∆t + ∇ ·
(
ρn

hU
∗,n+ 1

2
h

)
= c

Re
∆ρ̃n+1

h

(34)

ρn+1
h − ρn

h

∆t + 1
2

(
∇ ·

(
ρn

hU
∗,n+ 1

2
h

)
+ ∇ ·

(
ρ̃n+1

h U
∗,n+ 1

2
h

))
= c

Re
∆ρn+1

h (35)

where

U
∗,n+ 1

2
h = 3U∗,n

h − U∗,n−1
h

2 (36)

U∗,n
h = 1

|Ch|

∫
Ch

U(tn, x)dx (37)

and
ρn

h = 1
|Ch|

∫
Ch

ρ(tn, x)dx (38)

With the application of the flux determi-
nation method as in [10], this gives us:

〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉
+ bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+ c

Re

〈
∇ρ̃n+1

h ,∇ξh

〉
= 0 (39)

〈
ρn+1

h − ρn
h

∆t , ξh

〉
+ 1

2

(
bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+bh

(
ρ̃n+1

h , ξh, U
∗,n+ 1

2
h

))
+ c

Re

〈
∇ρn+1

h ,∇ξh

〉
= 0 (40)

where the trilinear form bh is defined by (13).
In conclusion, we define the finite volume
scheme for the approximation of the solution
(ρ̃n+1

h , ρn+1
h ) for equation (1) of system (3) as

follows:

Initialization: Let ρ0
h ∈ Wh be the ap-

proximation of the initial solution ρ0, with:

ρ0
Mi

= 1
|Ci|

∫
Ci

ρ0(x)dx (41)

At time step n+1: Let ρn
h ∈ Wh and

U
∗,n+ 1

2
h ∈ Vh, find (ρ̃n+1

h , ρn+1
h ) ∈ Wh × Wh,

such that for all ξh ∈ Wh, we have:

〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉
+ bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+ c

Re

〈
∇ρ̃n+1

h ,∇ξh

〉
= 0

〈
ρn+1

h − ρn
h

∆t , ξh

〉
+ 1

2

(
bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+bh

(
ρ̃n+1

h , ξh, U
∗,n+ 1

2
h

))
+ c

Re

〈
∇ρn+1

h ,∇ξh

〉
= 0

(42)

Now, we examine specific characteristics of
the density in the finite volume scheme de-
scribed by equations (42). Since the fi-
nite volume scheme is linear and consider-
ing the properties of the trilinear form bh,
the existence and uniqueness of the solu-
tion (ρ̃n+1

h , ρn+1
h ) are guaranteed by the Lax-

Milgram theorem. To achieve this, the fol-
lowing results are useful.

Lemma 3.1. [7] There exists a constant
C = C(Q) > 0 (independent of h) such that
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for all ρh ∈ Wh, we have:

∥∇ρh∥L4(Q) ≤ C∥∇ρh∥
1
2
L2(Q)∥∆hρh∥

1
2
L2(Q).

This lemma is a form of the Gagliardo-
Nirenberg inequality used to augment the
density gradient. We can formulate in the
same way an a priori estimates for the veloc-
ity.

Lemma 3.2. [10] There exists a constant
C > 0 such that for ρ, β ∈ Wh and Vh, we
have:

bh(ρ, β, U)| ≤ C∥U∥L4(Q)∥∇ρ∥L4(Q)∥β∥L2(Q).

Furthermore, we have the following
proposition:

Proposition 3.2. The two equations of (42)
are equivalent to the following equations:

ρ̃n+1
Mi

+ c

Re

∆t
|Ci|

∑
j∈V(i)

aij ρ̃
n+1
Mj

= ρn
Mi

− ∆t
|Ci|( ∑

j∈Vh(i)

2∑
l=1

|Γijl|Gijl(ρn
Mi
, ρn

Mj
, nijl)

)
(43)

ρn+1
Mi

+ c

Re

∆t
|Ci|

∑
j∈V(i)

aijρ
n+1
Mj

= ρn
Mi

− ∆t
2|Ci|( ∑

j∈V(i)

2∑
l=1

|Γijl|Gijl(ρ̃n+1
Mi

, ρn
Mj
, nijl)

+
∑

j∈V(i)

2∑
l=1

|Γijl|Gijl(ρn
Mi
, ρn

Mj
, nijl)

)
(44)

Proof. The proof follows the same lines as in
[10] to obtain the finite volume scheme with
the Euler scheme for the temporal deriva-
tive.

To obtain our results, it is crucial to
guarantee that the preceding finite volume
scheme maintains the maximum principle.

The proposition below asserts the L∞ sta-
bility of equations (39)-(40) on an unstruc-
tured grid, provided certain angle conditions
and under an appropriate CFL condition.
These stability properties, together with the
a priori estimates established earlier, play
a fundamental role in deriving both weak
and strong convergence of the sequence of
approximate solutions.

Proposition 3.3. Let U ∈ Vh be the veloc-
ity satisfying the incompressibility condition,
and let ρ0 be the initial density satisfying the
maximum principle. If the condition:

0 < ∆t < c3
|Ci|

|∂Ci|
, (45)

are satisfy, where c3 > 0 is a constant. For
all 0 < n < N − 1, there exists a unique
discrete solution (ρ̃n+1

h , ρn+1
h ) for the finite

volume scheme (39)-(40) that satisfies the
pointwise estimates:

0 < m ≤ ρn+1
h ≤ M < +∞

and 0 < m ≤ ρ̃n+1
h ≤ M < +∞.

Proof. We can rewrite equations (42) fol-
lows:

a1
(
ρ̃n+1

h , ξh

)
= l1(ξh),

a2
(
ρn+1

h , ξh

)
= l2(ξh),

a1
(
ρ̃n+1

h , ξh

)
=
〈
ρ̃n+1

h , ξh

〉
+c∆t
Re

〈
∇ρ̃n+1

h ,∇ξh

〉
,

a2
(
ρn+1

h , ξh

)
=
〈
ρn+1

h , ξh

〉
+c∆t
Re

〈
∇ρn+1

h ,∇ξh

〉
,

l1(ξh) = −∆tbh

(
ρn

h, ξh, U
⋆,n+ 1

2
h

)
,

l2(ξh) = −∆t
2

(
bh

(
ρn

h, ξh, U
⋆,n+ 1

2
h

)
+bh

(
ρ̃n+1

h , ξh, U
⋆,n+ 1

2
h

))

(46)
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We need to show that the bilinear forms a1

and a2 and the linear forms l1 and l2 satisfy
the conditions of the Lax-Milgram theorem,
i.e., a1 and a2 are continuous and coercive,
and l1 and l2 are continuous.

For the coercivity of the bilinear forms a1

and a2, we can write:

a1(ρ̃n+1
h , ρ̃n+1

h ) =
〈
ρ̃n+1

h , ρ̃n+1
h

〉
+ c∆t

Re

〈
∇ρ̃n+1

h ,∇ρ̃n+1
h

〉
= ∥ρ̃n+1

h ∥2
L2(Q) + c∆t

Re
∥∇ρ̃n+1

h ∥2
L2(Q)

≥ min
(

1, c∆t
Re

)
∥ρ̃n+1

h ∥2
H1(Q) (47)

Similarly,

a2(ρn+1
h , ρn+1

h ) =
〈
ρn+1

h , ρn+1
h

〉
+ c∆t

Re

〈
∇ρn+1

h ,∇ρ̃n+1
h

〉
= ∥ρn+1

h ∥2
L2(Q) + c∆t

Re
∥∇ρn+1

h ∥2
L2(Q)

≥ min
(

1, c∆t
Re

)
∥ρn+1

h ∥2
H1(Q) (48)

This describes the coercivity of the bilinear
forms a1 and a2.
For continuity, using the Cauchy-Schwarz
inequality in the form:

(ac+ bd)2 ≤ (a2 + b2)(c2 + d2),

where a, b, c and d are positive real number:

|a1(ρ̃n+1
h , ξh)| =

∣∣∣∣ 〈ρ̃n+1
h , ξh

〉
+ c∆t

Re

〈
∇ρ̃n+1

h ,∇ξh

〉 ∣∣∣∣
≤
∫

Q
|ρ̃n+1

h ∥ξh|dx+ c∆t
Re

∫
Q

|∇ρ̃n+1
h ∥∇ξh|dx

≤ C∥ρ̃n+1
h ∥H1(Q)∥ξh∥H1(Q) (49)

Similarly,

|a2(ρn+1
h , ξh)| =

∣∣∣∣ 〈ρn+1
h , ξh

〉
+ c∆t

Re

〈
∇ρn+1

h ,∇ξh

〉 ∣∣∣∣
≤
∫

Q
|ρn+1

h ∥ξh|dx+ c∆t
Re

∫
Q

|∇ρn+1
h ∥∇ξh|dx

≤ C∥ρn+1
h ∥H1(Q)∥ξh∥H1(Q) (50)

where C is a constent dependent of c∆t
Re

. We
conclude that the bilinear forms a1 and a2

are continuous. For the continuity of the
linear forms l1 and l2, we use Lemma 3.2,
which essentially shows the continuity of the
bilinear form bh and, consequently, the conti-
nuity of the linear forms l1 and l2. We have:

|l1(ξh)| =
∣∣∣∣∆tbh(ρn

h, ξh, U
⋆,n+ 1

2
h )

∣∣∣∣
≤ ∆tC∥U⋆,n+ 1

2
h ∥L4(Q)∥∇ρn

h∥L4(Q)∥ξh∥L2(Q)

≤ ∆tC∥U⋆,n+ 1
2

h ∥L4(Q)∥∇ρn
h∥L4(Q)∥∆ξh∥L2(Q)(51)

and

|l2(ξh)| =
∣∣∣∣∣∆t2

(
bh(ρn

h, ξh, U
⋆,n+ 1

2
h ) + bh(ρ̃n+1

h , ξh, U
⋆,n+ 1

2
h )

)∣∣∣∣∣
≤ ∆t

2 C
(

∥U⋆,n+ 1
2

h ∥L4(Q)∥∇ρn
h∥L4(Q)∥ξh∥L2(Q)

)
+∆t

2 C
(

∥U⋆,n+ 1
2

h ∥L4(Q)∥∇ρ̃n+1
h ∥L4(Q)∥ξh∥L2(Q)

)
≤ ∆t

2 C∥U⋆,n+ 1
2

h ∥L4(Q)∥∆ξh∥L2(Q)
(
∥∇ρn

h∥L4(Q)

+∥∇ρ̃n+1
h ∥L4(Q)

)
(52)

Obviously, relations (5) and (32) directly
imply relation (45).
Therefore, the conditions required for the
application of Lax-Milgram’s theorem are es-
tablished. So, there exists a unique solution
(ρ̃n+1

h , ρn+1
h ) for the system (42) satisfying the

pointwise estimates:

0 < m ≤ ρn+1
h ≤ M < +∞

and 0 < m ≤ ρ̃n+1
h ≤ M < +∞.

3.4. The hybrid finite volume-finite
element scheme

The hybrid scheme combines finite vol-
umes for mass conservation (two-step Runge-
Kutta) and finite elements for momentum.
The velocity temporal derivative uses an
Euler scheme. Therefore, let’s define the
numerical scheme as follows:
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Initialization: Let (ρ0
h, U

0
h) be the approxi-

mation of (ρ0, U0) for h sufficiently small.
At time step n+1: Let (ρn

h, U
n
h ) ∈ Wh×Vh.



Find (ρ̃n+1
h , ρn+1

h ) ∈ Wh × Wh,

such that ∀ξh ∈ Wh;

〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉
+ bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+ c

Re

〈
∇ρ̃n+1

h ,∇ξh

〉
= 0

〈
ρn+1

h − ρn
h

∆t , ξh

〉
+ 1

2

(
bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+bh

(
ρ̃n+1

h , ξh, U
∗,n+ 1

2
h

))
+ c

Re

〈
∇ρn+1

h ,∇ξh

〉
= 0

Letρn+1
h ∈ Wh, find Un+1

h ∈ Vh,

such that ∀(ϑh, πh) ∈ Vh × Vh :

〈
ρn

h

Un+1
h − Un

h

∆t , ϑh

〉

+1
2

(
ρn+1

h − ρn
h

∆t Un+1
h , ϑh

)
+a

(
ρn+1

h , Un+1
h , ϑh

)
+c

(
ρn+1

h Un+1
h − c

Re
∇ρn+1

h , Un+1
h , ϑh

)
−
〈
Pn+1

h ,∇ϑh

〉
= 0

〈
∇ · Un+1

h , πh

〉
= 0

Un+1
h |∑

T
= 0

(53)

Equations (53) involve solving two linear
systems to obtain (ρ̃n+1

h , ρn+1
h , Un+1

h ). First,
(ρ̃n+1

h , ρn+1
h ) is computed using finite volumes

for the convection-diffusion equation, with
U

∗,n+ 1
2

h as the velocity approximation. Then,
Un+1

h is solved with finite elements for the
momentum conservation equation, ensuring

incompressibility.
Now let ∆h : Wh → Wh be the linear form
defined by:

− ⟨∆hρh, ξh⟩ = ⟨∇ρh,∇ξh⟩ , ∀ξh ∈ Wh.

Then, the finite volume scheme can be refor-
mulated as follows:〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉
+ bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
− c

Re

〈
∆hρ̃

n+1
h , ξh

〉
= 0 (54)

〈
ρn+1

h − ρn
h

∆t , ξh

〉
+ 1

2

(
bh

(
ρn

h, ξh, U
∗,n+ 1

2
h

)
+bh

(
ρ̃n+1

h , ξh, U
∗,n+ 1

2
h

))
− c

Re

〈
∆hρ

n+1
h , ξh

〉
= 0(55)

In the next section, we prove the well-
posedness of the discrete problem (53) and
establish the discrete energy estimate for the
hybrid scheme, independently of the discrete
parameters.

4. Main results

Now, we give the main results of this paper.

Theorem 4.1. Let (ρh,∆t, Uh,∆t) be a pair of
discrete solutions of (53). When the param-
eters (h,∆t) tend to zero, then (ρh,∆t, Uh,∆t)
converges to (ρ, U) according to Definition
2.1, under the following conditions:
0 ≤ λ ≤ µ

4M and 0 < ∆t ≤ c0h.

The following subsections are devoted to
the proof of this main result.

4.1. Uniform estimates

Here, energy estimates for velocity and den-
sity projections are derived using the discrete
Laplacian of density.
Throughout this section, the symbol C will
denote a generic positive constant, which
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may vary from line to line or from one esti-
mate to another. Unless otherwise specified,
this constant is independent of the discretiza-
tion parameters (such as ∆t, h, etc.).

Proposition 4.1. There exists a unique
solution (ρ̃n+1

h , ρn+1
h , Un+1

h ) for the discrete
problem (53) satisfying the following inequal-
ities:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q) + 2µ1∥∇Un+1

h ∥2
L2(Q)

≤ C3 (56)

∥∇ρ̃n+1
h ∥2

L2(Q) − ∥∇ρn
h∥2

L2(Q) + ∥∇(ρ̃n+1
h

−ρn
h)∥2

L2(Q) + ∥∆hρ̃
n+1
h ∥2

L2(Q)

≤ C2∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)∥∇ρn

h∥2
L2(Q)

+∆t
2 ∥∆ρn

h∥2
L2(Q) (57)

∥∇ρn+1
h ∥2

L2(Q) − ∥∇ρn
h∥2

L2(Q) + ∥∇(ρn+1
h − ρn

h)∥2
L2(Q)

+∥∆hρ
n+1
h ∥2

L2(Q)

≤ C4∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)(

∥∇ρ̃n+1
h ∥2

L2(Q) + ∥∇ρn
h∥2

L2(Q)

)
+ ∆t

2
(
∥∆ρ̃n+1

h ∥2
L2(Q)

+ ∥∆ρn
h∥2

L2(Q)

)
(58)

where Fr and Re are the Froude and
Reynolds numbers respectively, M,C2, C3,
and C4 are positive constants independent of
h,∆t, and n.

Proof. For the proof of the first inequality
(56), we take ϑh = 2∆tUn+1

h in equation
(53)3, using the following equality

⟨a− b, 2a⟩ = ∥a∥2
L2(Q)−∥b∥2

L2(Q)+∥a−b∥2
L2(Q),

and the properties of trilinear forms a and c,
we obtain:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q) + 2α∆t∥∇Un+1

h ∥2
L2(Q)

≤ 2∆t
〈
Pn+1

h ,∇Un+1
h

〉
(59)

Moreover, for the right-hand side of
(59), we use the discrete maximum principle,
Hölder’s, Young’s and Poincaré’s inequalities
to obtain:

〈
Pn+1

h ,∇Un+1
h

〉
=
∫

Q

[
− c

Re
(Un+1

h .∇ρn+1
h )

+ 1
2Fr2 (ρn+1

h )2
]
.∇Un+1

h dx

≤ 2∆tc
Re

∥∇Un+1
h ∥L2(Q)∥Un+1

h ∥L4(Q)∥∇ρn+1
h ∥L4(Q)

+2MC1∆t
Fr2 ∥∇ρn+1

h ∥L2(Q)∥∇Un+1
h ∥L2(Q)

≤ 2∆tC2c

Re
∥∇Un+1

h ∥L2(Q)∥Un+1
h ∥L4(Q)∥∇ρn+1

h ∥L4(Q)

+MC1∆t
Fr2

(
∥∇ρn+1

h ∥2
L2(Q) + ∥∇Un+1

h ∥2
L2(Q)

)
(60)

Then (59) becomes:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q) + 2α∆t∥∇Un+1

h ∥2
L2(Q)

≤ 2∆tC2c

Re
∥∇Un+1

h ∥L2(Q)∥Un+1
h ∥L4(Q)∥∇ρn+1

h ∥L4(Q)

+MC1∆t
Fr2

(
∥∇ρn+1

h ∥2
L2(Q) + ∥∇Un+1

h ∥2
L2(Q)

)
(61)

For the following of this proof, we set:

I1 = ∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q).

Using Gagliardo-Nirenberg inequality, a.e

∥Un+1
h ∥2

L4(Q) ≤ C3∥∇Un+1
h ∥L2(Q)∥Un+1

h ∥L2(Q),
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Poincaré inequality and Sobolev embedding
for velocity, the previous inequality gives:

I1 + 2α∆t∥∇Un+1
h ∥2

L2(Q)

≤ 2∆tC1c

Re
∥∇Un+1

h ∥2
L2(Q)∥∇ρn+1

h ∥L4(Q)

+MC2∆t
Fr2

(
∥∇ρn+1

h ∥2
L2(Q) + ∥∇Un+1

h ∥2
L2(Q)

)
≤ 2C1∥∇Un+1

h ∥2
L2(Q)∥∇ρn+1

h ∥L4(Q)

+MC2∆t
Fr2

(
∥∇ρn+1

h ∥2
L2(Q) + ∥∇Un+1

h ∥2
L2(Q)

)
.

Which gives us:

I1 + 2∥∇Un+1
h ∥2

L2(Q)

(
α∆t− C1∥∇ρn+1

h ∥L4(Q)

−MC2∆t
2Fr2

)
≤ MC2∆t

Fr2 ∥∇ρn+1
h ∥2

L2(Q) (62)

Since ρn+1
h ∈ Wh ⊂ H1(Q) and H1(Q) ↪→

L4(Q) then, inequality (62) becomes:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q) + 2µ1∥∇Un+1

h ∥2
L2(Q) ≤ C3,

with µ1 = α∆t− C1C2 − MC∆t
2Fr2 .

Therefore, we deduce:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q) + ∥
√
ρn

h(Un+1
h

−Un
h )∥2

L2(Q) + 2µ1∥∇Un+1
h ∥2

L2(Q) ≤ C3 (63)

This concludes the proof of inequality (56).
For the second inequality, we take

ξh = −∆t∆hρ̃
n+1
h in (54) to obtain:

∥∇ρ̃n+1
h ∥2

L2(Q) − ∥∇ρn
h∥2

L2(Q) + ∥∇(ρ̃n+1
h − ρn

h)∥2
L2(Q)

+2c∆t
Re

∥∆hρ̃
n+1
h ∥2

L2(Q) = 2∆tbh

(
ρn

h,∆hρ̃
n+1
h ,

U
∗,n+ 1

2
h

)
:= I2 (64)

Using Lemmas 3.1 and 3.2, as well as the
Young’s inequality, we estimate the right-
hand term I2 in (64) as follows:

|I2| ≤ 2C1∆t∥U
∗,n+ 1

2
h ∥L4(Q)∥∇ρn

h∥L4(Q)∥∆hρ̃
n+1
h ∥L2(Q)

≤ c∆t
Re

∥∆ρ̃n+1
h ∥2

L2 + C1Re∆t
c

∥U∗,n+ 1
2

h ∥2
L4(Q)∥∇ρn

h∥2
L4(Q)

≤ c∆t
Re

∥∆ρ̃n+1
h ∥2

L2 + C1Re

c
∆t∥U∗,n+ 1

2
h ∥2

L4(Q)∥∇ρn
h∥L2(Q)

∥∆ρn
h∥L2(Q) (65)

Finally, using Young’s inequality and
Lemma 3.1 for the velocity, (65) becomes:

|I2| ≤ c∆t
Re

∥∆ρ̃n+1
h ∥2

L2(Q) + c∆t
2Re∥∆ρn

h∥2
L2(Q)

+C2∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)∥∇ρn

h∥2
L2(Q) (66)

Combining (64) and (65), we obtain (57).
Following the same manage as for (57), we
obtain (58) by taking ξh = −∆t∆hρ

n+1
h in

equation (55). Thus, we define:

I3 = bh

(
ρ̃n+1

h ,∆hρ
n+1
h , U

∗,n+ 1
2

h

)
;

I4 = bh

(
ρn

h,∆hρ
n+1
h , U

∗,n+ 1
2

h

)
.

Therefore, equivalently to inequality (66), we
have:

|I3| ≤ c∆t
2Re∥∆ρn+1

h ∥2
L2(Q) + c∆t

2Re∥∆ρn
h∥2

L2(Q)

+C3∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)∥∇ρn

h∥2
L2(Q) (67)

|I4| ≤ c∆t
2Re∥∆ρn+1

h ∥2
L2(Q) + c∆t

2Re∥∆ρ̃n+1
h ∥2

L2(Q)

+C4∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)∥∇ρ̃n+1

h ∥2
L2(Q) (68)

By adding (67) and (68), we obtain:

|I3| + |I4| ≤ c∆t
Re

∥∆ρn+1
h ∥2

L2(Q) + c∆t
2Re

(
∥∆ρ̃n+1

h ∥2
L2(Q)

+∥∆ρn
h∥2

L2(Q)

)
+ C4∆t∥U

∗,n+ 1
2

h ∥2
L2(Q)∥∇U∗,n+ 1

2
h ∥2

L2(Q)(
∥∇ρ̃n+1

h ∥2
L2(Q) + ∥∇ρn

h∥2
L2(Q)

)
(69)

By associating (69) with the equivalent of
(64), we obtain (58).
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To establish the global stability of the
scheme (53), we can derive estimates for
the velocity and enhanced regularity for the
density using Proposition 4.1. and discrete
Gronwall’s lemma.

Lemma 4.1. Let U0 ∈ V ; ρ ∈ H1(Q), then
the solution (ρ̃n+1

h , ρn+1
h , Un+1

h ) for the dis-
crete problem (53) satisfies the following es-
timates:

(i) max
0≤n≤N

∥Un
h ∥L2(Q) ≤ C;

(ii)
N∑

n=0
∥∇Un

h ∥2
L2(Q) ≤ C;

(iii)
N−1∑
n=0

∥Un+1
h − Un

h ∥2
L2(Q) ≤ C;

(iv) max
0≤n≤N

(
∥∇ρn

h∥L2(Q)
)

≤ C;

(v) max
0≤n≤N

(
∥∇ρ̃n+1

h ∥L2(Q)
)

≤ C;

(vi)
N−1∑
n=0

∆t∥∆ρ̃n+1
h ∥2

L2(Q) ≤ C;

(vii)
N−1∑
n=0

∆t∥∆ρn+1
h ∥2

L2(Q) ≤ C;

(viii)
N−1∑
n=0

∥ρ̃n+1
h − ρn

h∥2
L2(Q) ≤ C;

(ix)
N−1∑
n=0

∥ρn+1
h − ρn

h∥2
L2(Q) ≤ C,

where C > 0 is a constant depending on the
initial conditions (ρ0, U0,

c

Re
) but indepen-

dent of h, ∆t and n.

Proof. Starting from the first inequality of
Proposition 4.1., we have:

∥
√
ρn+1

h Un+1
h ∥2

L2(Q) − ∥
√
ρn

hU
n
h ∥2

L2(Q)

+∥
√
ρn

h(Un+1
h − Un

h )∥2
L2(Q)

+2µ1∥∇Un+1
h ∥2

L2(Q) ≤ C3;

since ρn+1
h ≤ M and Un−1

h , Un
h are known

and in H1
0 (Q), by summing from 0 to N − 1,

we recover estimates (i),(ii), and (iii).

For the remaining estimates, we start from
the second inequality of Proposition 4.1.
Considering the characterization of the ve-
locity U⋆,n+ 1

2 in equation (32) and the prop-
erties of the density, we can rewrite this
inequality as follows:

∥∇ρ̃n+1
h ∥2

L2(Q) − ∥∇ρn
h∥2

L2(Q) + ∥∇(ρ̃n+1
h − ρn

h)∥2
L2(Q)

+∆t∥∆hρ̃
n+1
h ∥2

L2(Q)

≤ C2∆t∥U
∗,n+ 1

2
h ∥2

L2(Q)∥∇U∗,n+ 1
2

h ∥2
L2(Q)∥∇ρn

h∥2
L2(Q)

+1
2∥∆ρn

h∥2
L2(Q) (70)

Thus, with U
∗,n+ 1

2
h and ∇U∗,n+ 1

2
h in H1

0 (Q);
∥∆ρh∥L2(Q) ≤ ĉ∥ρh∥L2(Q) and ρn+1

h ≤ M ; in-
equality (70) becomes:

∥∇ρ̃n+1
h ∥2

L2(Q) − ∥∇ρn
h∥2

L2(Q) + ∥∇(ρ̃n+1
h − ρn

h)∥2
L2(Q)

+∆t∥∆hρ̃
n+1
h ∥2

L2(Q) ≤ C (71)

Summing (71) from, 0 to N − 1 and using
Gronwall’s lemma, we obtain estimates (iv),
(vi) and (viii). Following the same process
and using estimates (iv) and (vi), we also
find estimates (v), (vii) and (ix).

Finally, based on Lemma 4.1, we deduce
the following result:

Corollary 4.1. Under the assumptions of
Lemma 4.1, the following estimates hold:

N∑
n=0

∥∇ρn
h∥4

L4(Q) ≤ C and
N∑

n=0
∥∇ρ̃n+1

h ∥4
L4(Q) ≤ C,

where C > 0 is independent of h and ∆t.

Proof. This result is a direct consequence of
Theorem 3.1 and Lemma 3.1.

4.2. Weak convergence

To study the convergence of the hybrid fi-
nite volume-finite element scheme (53) to
the weak solution of (3)-(4), we define the
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following auxiliary functions.

In the following, we introduce the piece-
wise constant-in-time functions defined for
tn < t ≤ tn+1:

Uh,∆t(t) = Un+1
h , Ûh,∆t(t) = Un

h , Ũh,∆t(t) = U
⋆, n+ 1

2
h ,

ρh,∆t(t) = ρn+1
h , ρ̃h,∆t(t) = ρ̃n+1

h , ρ̂h,∆t(t) = ρn
h.

In addition, we define ρ̆h,∆t ∈ C([0, T ],Wh)
as the piecewise linear (continuous-in-time)
function given on each interval [tn, tn+1] by:

ρ̆h,∆t(t) = ρn+1
h + ρn+1

h − ρn
h

∆t (t− tn+1).

Using Lemma 4.1 and Corollary 4.1, we
arrive at the following result (see [3], [6]
and [7]):

Lemma 4.2. The following estimates (in-
dependent of h and ∆t) hold:

{Uh,∆t}h,∆t, {Ûh,∆t}h,∆t, {Ũh,∆t}h,∆tare bounded in
L∞(0, T ;L2(Q)) ∩ L2(0, T ;H1

0 (Q)) (72)

{ρh,∆t}h,∆t, {ρ̂h,∆t}h,∆t, {ρ̃h,∆t}h,∆t are bounded in
L∞(0, T ;H1(Q)) ∩ L∞(QT ) ∩ L2(0, T ;H2(Q))(73)

{∇ρh,∆t}h,∆t, {∇ρ̃h,∆t}h,∆t are bounded in
L4(0, T ;L4(Q)) (74)

Also,

∥Uh,∆t − Ûh,∆t∥2
L2(0,T ;L2(Q)) ≤ C∆t and

∥ρh,∆t − ρ̂h,∆t∥2
L2(0,T ;H1(Q)) ≤ C∆t,

∥ρ̃h,∆t − ρ̂h,∆t∥2
L2(0,T ;H1(Q)) ≤ C∆t (75)

Thanks to the a priori estimates
of Lemma 4.1, and in view of
the bounds established in Lemma
4.2, we know that the families
{Uh,∆t}h,∆t, {Ûh,∆t}h,∆t, {Ũh,∆t}h,∆t, {ρh,∆t}h,∆t,

{ρ̂h,∆t}h,∆t, {ρ̃h,∆t}h,∆t are uniformly

bounded in the appropriate functional spaces.
By weak compactness, we may thus extract
sub-sequences, still denoted in the same
way, that converge weakly to some limit
functions U, Û , ρ̃, ρ, ρ̂. Moreover, from
the discrete relation (75), the limits satisfy
U = Û , ρ̃ = ρ̂, : ρ = ρ̂. We can therefore
state the following result (see [7, Lemma 5.3]
for the proof).

Lemma 4.3. There exists sub-sequences
of {Uh,∆t}h,∆t, {Ûh,∆t}h,∆t, {ρh,∆t}h,∆t,

{ρ̂h,∆t}h,∆t, {ρ̃h,∆t}h,∆t, {∇ρh,∆t}h,∆t and
{∇ρ̃h,∆t}h,∆t and functions U, ρ satisfy-
ing the following weak convergences, as
(h,∆t) → (0, 0):

Uh,∆t → U, Ûh,∆t → U, Ũh,∆t → U

in

L
2(0, T ;H1

0 (Q)) − weakly
L∞(0, T ;L2(Q)) − weakly − ⋆

(76)

ρh,∆t → ρ, ρ̂h,∆t → ρ, ρ̃h,∆t → ρ, ρ̆ → ρ

in


L∞(0, T ;H1(Q)) − weakly − ⋆

L∞(QT ) − weakly − ⋆

L2(0, T ;H2(Q)) − weakly

(77)

∇ρh,∆t → ∇ρ, ∇ρ̃ → ∇ρ
in L4(0, T ;L4(Q)) (78)

4.3. Strong convergence

For nonlinear systems, strong convergence
of the hybrid scheme (53) is key to handling
nonlinear terms. We establish compactness
for both discrete density and velocity.

Proposition 4.2. The following estimates
hold:

(i)
N−1∑
n=0

∥ρ̃n+1
h − ρn

h∥4/3
L2(Q) ≤ C,

(ii)
N−1∑
n=0

∥ρn+1
h − ρn

h∥4/3
L2(Q) ≤ C,

where C > 0 is a constant depending on the
initial conditions (ρ0, U0) but independent of
h, ∆t and n.
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Proof. For estimate (i), we follow the proof
of Proposition 4 in [10]. In (54), we use
Lemma 3.2, the Cauchy-Schwarz inequality,
and the Sobolev embedding H1

0 (Q) ⊂ L4(Q)
for all ξh ∈ Wh.∣∣∣∣∣
〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉∣∣∣∣∣ ≤ C∥∇U⋆,n+ 1
2 ∥L2(Q)∥∇ρn

h∥L4(Q)

∥ξ∥L2(Q) + c

Re
∥∆hρ̃

n+1
h ∥L2(Q)∥ξh∥L2(Q)∣∣∣∣∣

〈
ρ̃n+1

h − ρn
h

∆t , ξh

〉∣∣∣∣∣ ≤
(
C∥∇U⋆,n+ 1

2 ∥L2(Q)∥∇ρn
h∥L4(Q)

+ c

Re
∥∆hρ̃

n+1
h ∥h

)
∥ξ∥h (79)

Knowing that ρ̃
n+1
h − ρn

h

∆t ∈ Wh ⊂ L2(Q) and
using continuity, from (79) we deduce:∣∣∣∣∣
∣∣∣∣∣ ρ̃

n+1
h − ρn

h

∆t

∣∣∣∣∣
∣∣∣∣∣
L2(Q)

≤ C∥∇U⋆,n+ 1
2 ∥L2(Q)∥∇ρn

h∥L4(Q)

+cĉ2

Re
∥∆hρ̃

n+1
h ∥L2(Q) (80)

Using the Minkowski inequality and sum-
ming (80) for n = 0, N − 1, we obtain:

N−1∑
n=0

∥∥∥∥∥ ρ̃
n+1
h − ρn

h

∆t

∥∥∥∥∥
4/3

L2(Q)
≤ C

N−1∑
n=0

∥∇U⋆,n+ 1
2 ∥4/3

L2(Q)

∥∇ρn
h∥4/3

L4(Q) + C
(
c

Re

)4/3 N−1∑
n=0

∥∆hρ̃
n+1
h ∥4/3

L2(Q).

Finally, applying the Hölder inequality, the
estimates provided by Lemma 4.1 and Corol-
lary 4.1, we directly obtain the desired result,
i.e., estimate (i).
For estimate (ii), following the same manage
as in the proof of (i), we obtain the following
inequality, similar to (80):

∣∣∣∣∣
∣∣∣∣∣ρ

n+1
h − ρn

h

∆t

∣∣∣∣∣
∣∣∣∣∣
L2(Q)

≤
(
C1∥∇U⋆,n+ 1

2 ∥L2(Q)∥∇ρn
h∥L4(Q)

+cĉ2

Re
∥∆hρ̃

n+1
h ∥L2(Q)

)
+
(
C2∥∇U⋆,n+ 1

2 ∥L2(Q)

∥∇ρ̃n+1
h ∥L4(Q) + cĉ2

Re
∥∆hρ

n+1
h ∥L2(Q)

)
(81)

Thus, we have, by using the same argu-
ments as for (i):

N−1∑
n=0

∣∣∣∣∣
∣∣∣∣∣ρ

n+1
h − ρn

h

∆t

∣∣∣∣∣
∣∣∣∣∣
4/3

L2(Q)
≤ C1

N−1∑
n=0

∥∇U⋆,n+ 1
2 ∥4/3

L2(Q)

∥∇ρn
h∥4/3

L4(Q) +
(
c

Re

)4/3 N−1∑
n=0

∥∆hρ̃
n+1
h ∥4/3

L2(Q)

+
(
c

Re

)4/3 N−1∑
n=0

∥∆hρ
n+1
h ∥4/3

L2(Q)

+C2

N−1∑
n=0

∥∇U⋆,n+ 1
2 ∥4/3

L2(Q)∥∇ρ̃n+1
h ∥4/3

L4(Q) (82)

With (82), we can conclude the estimate
(ii).

Corollary 4.2. From Proposition 4.2, we
deduce the following estimate:∥∥∥∥∥ ddtρ̆h,∆t

∥∥∥∥∥
4/3

L2(0,T ;L2(Q))
≤ C (83)

From (83), we can derive the following
strong convergences for the density, thanks
to a compactness theorem of Aubin-Lions
type (see [13]):
ρh,∆t → ρ, ρ̂h,∆t → ρ, ρ̃h,∆t → ρ, ρ̆h,∆t → ρ

in L2(0, T ;L2(Q))-strongly as (h,∆t) → 0 (84)

Moreover, according to Lemma 4.1, the
discrete density is bounded in L∞(QT ), so
we also obtain strong convergence in Lp(QT )
for p < ∞. For p = ∞, we can deduce
convergence for at least a sub-sequence of
ρh,∆t, ρ̃h,∆t, or ρ̂h,∆t to ρ almost everywhere
in (t, x) ∈ QT .

We now estimate the fractional temporal
derivative for the discrete velocity.

Proposition 4.3. The following estimate
holds:

∫ T −δ

0

∥∥∥∥√ρh,∆t(t+ δ) (Uh,∆t(t+ δ)

−Uh,∆t(t))∥2
L2(Q) dt ≤ Cδ1/2 (85)

∀δ : 0 < δ < T,
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where C > 0 is independent of (h,∆t, δ).

Proof. Since ρh,∆t and Uh,∆t are piecewise
constant functions, to obtain (85) it suffices
to consider δ as a multiple of the time step
∆t, that is δ = r∆t with r = 0, · · · , N and
to prove

∆t
N−r∑
m=0

∥∥∥∥√ρm+r
h

(
Um+r

h − Um
h

)∥∥∥∥2

L2(Q)

≤ C(r∆t)1/2 (86)

Firstly, we write the time derivative to the
momentum equation (53)3 in a conservative
form. It is obtained by adding to both sides
of (53)3 the term,

1
2

〈
ρn+1

h − ρn
h

∆t Un+1
h , ϑh

〉
.

So we obtain the following from (53)3 by tak-
ing as test function ϑh = Um+r

h − Um
h , using

this identity :〈
ρm+r

n Um+r
h − ρm

h U
m
h , U

m+r
h − Um

h

〉
=
〈
ρm+r

h

〈
Um+r

h − Um
h

〉
, Um+r

h − Um
h

〉
+
〈(
ρm+r

h − ρm
h

)
Um

h , U
m+r
h − Um

h

〉
,

multiplying by ∆t and summing for
n = m, · · · ,m− 1 + r:∥∥∥∥√ρm+r

h

(
Um+r

h − Um
h

)∥∥∥∥2

L2(Q)

= −
〈(
ρm+r

h − ρm
h

)
Um

h , U
m+r
h − Um

h

〉
−∆t

m−1+r∑
n=m

c
(
ρn+1

h Un+1
h − c

Re
∇ρn+1

h , Un+1
h , ϑh

)

+∆t
m−1+r∑

n=m

〈
Pn+1

h ,∇ϑh

〉

−∆t
m−1+r∑

n=m

a
(
ρn+1

h , Un+1
h , ϑh

)

+1
2∆t

m−1+r∑
n=m

〈
ρn+1

h − ρn
h

∆t Un+1
h , ϑh

〉
(87)

On the other hand summing for n =
m, · · · ,m−r+1, multiplying by ∆t and tak-
ing ξh = ρm

h − ρm+r
h as a test function in the

density equation (53)2, we obtain the follow-
ing, using the properties of the trilinear form
b, as well as Hölder’s and Cauchy-Schwarz’s
inequalities.

∣∣∣ρm
h − ρm+r

h

∣∣∣2
h

≤ ∆t
2

m−1+r∑
n=m

(
∥U⋆,n+ 1

2
h ∥L4(Q)∥∇ρn

h∥L4(Q)

∥ρm
h − ρm+r

h ∥L2(Q)
)

+ ∆t
2

m−1+r∑
n=m

(
∥U⋆,n+ 1

2
h ∥L4(Q)

∥∇ρ̃n+1
h ∥L4(Q) ∥ρm

h − ρm+r
h ∥L2(Q)

)
+ 2c
Re

m−1+r∑
n=m

(

∥∆hρ
n+1
h ∥L2(Q)∥ρm

h − ρm+r
h ∥L2(Q)

)
.

∥ρm
h − ρm+r

h ∥L2(Q) ≤ C∆t
2

m−1+r∑
n=m

(
∥U⋆,n+ 1

2
h ∥L4(Q) ∥∇ρn

h∥L4(Q)
)

+C∆t
2

m−1+r∑
n=m

∥U⋆,n+ 1
2

h ∥L4(Q)∥∇ρ̃n+1
h ∥L4(Q) + 2c∆t

Re

m−1+r∑
n=m

∥∆hρ
n+1
h ∥L2(Q)

≤ C

2

(
∆t

m−1+r∑
n=m

∥U⋆,n+ 1
2

h ∥L4(Q)∥∇ρn
h∥L4(Q) + ∥U⋆,n+ 1

2
h ∥L4(Q)∥∇ρ̃n+1

h ∥L4(Q)

+c∆t
Re

m−1+r∑
n=m

∥∆hρ
n+1
h ∥L2(Q)

)1/2 (m−1+r∑
n=m

∆t
)1/2

≤ C(r∆t)1/2

2 ≤ C(r∆t)1/2.

Therefore,
max

1≤m≤N
∥ρm

h − ρm+r
h ∥L2(Q) ≤ C(r∆t)1/2 (88)

Multiplying (87) by ∆t, summing for m =
0, · · · , N − r and bounding adequately, we
can obtain the required bound (86). So we
have:

∆t
N−r∑
m=0

∥∥∥∥√ρm+r
h

(
Um+r

h − Um
h

)∥∥∥∥2

L2(Q)
≤

5∑
i=1

|Ji|

(89)
Now, we show that each |Ji| can be increased
by C(r∆t)1/2. In the following, we will prove
J1 and J4; the others are handled in the same
way. For more details, the reader may refer
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to [3]. For J1, we use (88) to obtain:

J1 ≤ ∆t
N−r∑
m=0

∥ρm
h − ρm+r

h ∥L2(Q)∥Um
h ∥L4(Q)∥Um+r

h − Um
h ∥L4(Q)

≤ max
1≤m≤N

∥ρm
h − ρm+r

h ∥L2(Q)

(
∆t

N−r∑
m=0

∥Um
h ∥2

L4(Q)

)1/2

×
(

∆t
N−r∑
m=0

∥Um+r
h − Um

h ∥2
L4(Q)

)1/2

≤ C(r∆t)1/2 (90)

For J4 we have:

J4 ≤ C(∆t)2
N−r∑
m=0

m−1+r∑
n=m

(
c

Re
∥Un+1

h ∥L4(Q)

×∥∇ρn+1
h ∥L4(Q)∥Um+r

h − Um
h ∥L2(Q)

+ M

Fr2 ∥∇ρn+1
h ∥L2(Q)∥Um+r

h − Um
h ∥L2(Q)

)

≤ C∆t
N−r∑
m=0

(
c

Re
∥Un+1

h ∥L4(Q)∥∇ρn+1
h ∥L4(Q)

+ M

Fr2 ∥∇ρn+1
h ∥L2(Q)

)
×
(

ñ∑
m=ñ−r+1

∆t∥Um+r
h

−Um
h ∥2

L2(Q)

)1/2

×
(

ñ∑
m=ñ−r+1

∆t
)1/2

≤ C(r∆t)1/2
(

N−r∑
m=0

(
∆t c
Re

∥Un+1
h ∥L4(Q)

∥∇ρn+1
h ∥L4(Q) + M

Fr2 ∥∇ρn+1
h ∥L2(Q)

)2)1/2

×
(

N−r∑
m=0

∆t
)1/2

≤ C(r∆t)1/2.

with

ñ =


0 if n < 0,
n if 0 ≤ n ≤ N − r,

N − r if n > N − r,

and |ñ− ˜n− r + 1| ≤ r. This completes the
proof of Proposition 4.3.

Finally, based on the result and thanks
to the Aubin-Lions type compactness (see
[ [16], Theorem 5]), we obtain the following
strong convergence for the velocity.

Corollary 4.3. Let Uh,∆t and Ûh,∆t be the
piecewise constant functions taking values
in Un+1

h and Un
h respectively. Following the

previous proposition, we have the following
convergences, as (h,∆t) → (0, 0):

Uh,∆t → U, Ûh,∆t → U

in L2(0, T ;L2(Q))-strongly (91)

4.4. Passing to the limit

We aim to show that the approximate so-
lution (ρ̃n+1

h , ρn+1
h , Un+1

h ), obtained from the
hybrid finite volume-finite element scheme
(53), converges to the weak solution (ρ, U)
of the Kazhikhov-Smagulov model (3)-(4) as
h and ∆t tend to zero.

For mass conservation, the limit transi-
tion for the finite volume scheme (42) as
(h,∆t) → (0, 0) is detailed by Feistauer et al.
(see [ [17]], section E). However, in our case,
the velocity in the convective part depends
on (h,∆t). To address this, we use the
following strong-weak convergence result.

Lemma 4.4. (See [10]) Let (vn)n ∈
L2(0, T ;L2(Q)) and (ηn)n ∈ L2(0, T ;H1(Q))
such that vn → v in L2(0, T ;L2(Q)) −
strongly and ηn → η on L2(0, T ;H1(Q)) −
weakly, then for any ϕ ∈ C1([0;T ];H1(Q)),
such that ϕ(., T ) = 0, we have:∫ T

0

∫
Q
vn.∇ηnϕdxdt →

∫ T

0

∫
Q
v.∇ηϕdxdt

as n → ∞. (92)

To take the limit in the momentum con-
servation equation, we select a suitable test
function v ∈ C1([0, T ]; C∞

c (Q)) such that
∇ · v = 0 and v(T, ·) = 0. We define
vn

h as the projection of v(tn) onto Vh. Let
vh,∆t ∈ L∞(0, T ; Vh) be the piecewise con-
stant function taking the value vn+1

h on
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(tn, tn+1], and let vh,∆t ∈ C0([0, T ]; Vh) be
the continuous piecewise linear function such
that ṽh,∆t(tn) = vn

h . Then, as (h,∆t) → 0,
we have:

vh,∆t → v in L∞(0, T ;H1
0 (Q)),

ṽh,∆ → v in W 1,∞(0, T ;H1
0 (Q)).

Now, we are going to write the time deriva-
tive of the discrete equation (53)3 in the
conservative form.

By adding the following term to the right
and the left-hand sides of (53)3,

1
2

〈
ρn+1

h − ρn
h

∆t Un+1
h , ϑh

〉
,

we obtain,

〈
ρn+1

h Un+1
h − ρn

hU
n
h

∆t , ϑh

〉
+ c

(
ρn+1

h Un+1
h

− c

Re
∇ρn+1

h , Un+1
h , ϑh

)
+ a

(
ρn+1

h , Un+1
h , ϑh

)
=
(
Pn+1

h ,∇ϑh

)
+ 1

2

〈
ρn+1

h − ρn
h

∆t Un+1
h , ϑh

〉
(93)

Next, taking ϑh = vn+1
h as test function

in (93), multiplying by ∆t, summing for
n = 0, · · · , N − 1, and using the following
discrete integration by parts in time,

N−1∑
n=0

〈
ρn+1

h Un+1
h − ρn

hU
n
h , v

n+1
h

〉
=
〈
ρN

h U
N
h , v

N
h

〉

−
N−1∑
n=0

〈
ρn

hU
n
h , v

n+1
h − vn

h

〉
−
〈
ρ0

hU
0
h , v

0
h

〉
,

with vN
h = 0; (since v(T, .) = 0), we arrive

to the following conservative form:

−∆t
N−1∑
n=0

〈
ρn

hU
n
h ,
vn+1

h − vn
h

∆t

〉
+ ∆t

N−1∑
n=0

a

×
(
ρn+1

h , Un+1
h , vn+1

h

)
+ ∆t

N−1∑
n=0

c
(
ρn+1

h Un+1
h

− c

Re
∇ρn+1

h , Un+1
h , vn+1

h

)
−
〈
ρ0

hU
0
h , v

0
h

〉
= ∆t

N−1∑
n=0

〈
Pn+1

h ,∇vn+1
h

〉

+∆t
2

N−1∑
n=0

〈
ρn+1

h − ρn
h

∆t Un+1
h , vn+1

h

〉
(94)

Then, by using the definitions introduced at
the beginning of Section 4.2, we obtain the
following variational formulation:

−
∫ T

0

〈
ρ̂h,∆tÛh,∆t,

∂

∂t
ṽh,∆t

〉
−
〈
ρ0

hU
0
h , v

0
h

〉
+
∫ T

0
a (ρh,∆t, Uh,∆t, vh,∆t) +

∫ T

0
c (ρh,∆tUh,∆t

− c

Re
∇ρh,∆t, Uh,∆t, vh,∆t

)
− 1

2

∫ T

0

〈
Uh,∆t

∂

∂t
ρ̆h,∆t, vh,∆t

〉

=
∫ T

0

〈
− c

Re
(Uh,∆t.∇ρh,∆t) + 1

2Fr2 (ρh,∆t)2,∇vh,∆t

〉
(95)

Using the convergence results obtained
earlier, we can pass to the limit in the varia-
tional formulation (95) of the discrete veloc-
ity equation (53)3 to obtain:

−
∫ T

0
⟨ρU, ∂tv⟩ − ⟨ρ0U0, v0⟩ +

∫ T

0
c
(
ρU − c

Re
∇ρ, U, v

)
+
∫ T

0
a (ρ, U, v)

=
∫ T

0

〈
− c

Re
(U.∇ρ) + 1

2Fr2ρ
2,∇v

〉
+ 1

2

∫ T

0

〈
U
∂

∂t
ρ, v

〉
(96)

Therefore, considering the variational for-
mulation given in (12), we can deduce that
this equation is equivalent to the following
equation where we replace the test func-
tion v with a test function ϕ ∈ D(QT ) with
QT = [0, T ] ×Q.
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−
∫

QT

ρU∂tϕdxdydt−
∫

QT

(
ρU ⊗ U − 1

Re
∇U

− c

Re
(∇ρ⊗ U + U ⊗ ∇ρ)

)
.∇ϕdxdydt

− 1
2Fr2

∫
QT

ρ2 div(ϕ)dxdydt

+ c

Re

∫
QT

div(U)∇ρ.ϕdxdydt

=
∫

Q
ρ0U0ϕ(0, x, y)dxdy (97)

Which is equvalent to the equation
(11).Then, the limit function (ρ, U) satisfies
the weak formulation (11) of the Kazhikhov-
Smagulov model in the distribution sense on
(0;T ). Consequently, we conclude the proof
of Theorem 4.1.

5. Numerical Results

This section introduces two types of numer-
ical simulations to demonstrate that the

scheme provides accurate approximations of
density and velocity for variable-density flu-
ids, exemplified by the Kazhikhov-Smagulov
equations. First, we compare the numerical
solution with an analytical solution from the
literature. Then, we examine the evolution
of L∞, L2, and L1 errors with respect to ∆t
and (∆t)2.
To do this, we consider the following system
as the analytical solution.

ρex = 2 + sin(y) cos(x) sin(t),

Uex = −4
 y(x− 1)2(x+ 1)2(y + 1)(y − 1)

−x(y − 1)2(y + 1)2(x+ 1)(x− 1)


(98)

Here we take Q = [−1; 1]2, Wh = P1 and
Vh = P2.

Fig. 2. At left Meshing of domain Q = [−1; 1]2 and at right the exact density for h = 0.0301 and
n = 91772 triangles.
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Fig. 3. The two components of exact velocity.

Table 1
Errors in norms as a function of h and ∆t = 5.10−2.

n (triangles) 29 45 47 88 137
h 1.7666 1.3938 1.3552 0.9880 0.7882

err-ρ-L1 1.35 × 10−7 1.40 × 10−7 1.39 × 10−7 1.45 × 10−7 1.48 × 10−7

err-ρ-L2 7.03 × 10−8 7.17 × 10−8 7.16 × 10−8 7.37 × 10−8 7.51 × 10−8

err-ρ-L∞ 4 × 10−8 4 × 10−8 4 × 10−8 4 × 10−8 4 × 10−8

err-U1-L1 2.83 × 10−2 5.73 × 10−2 3.17 × 10−2 1.05 × 10−2 4.66 × 10−3

err-U1-L2 3.62 × 10−2 1.69 × 10−1 3.40 × 10−2 1.09 × 10−2 4.75 × 10−3

err-U1-L∞ 5.80 × 10−2 7.01 × 10−1 4.38 × 10−2 1.38 × 10−2 5.40 × 10−3

err-U2-L1 4.16 × 10−2 6.28 × 10−2 4.51 × 10−2 1.31 × 10−2 6.15 × 10−3

err-U2-L2 5.59 × 10−2 1.51 × 10−1 6.83 × 10−2 1.55 × 10−2 7.53 × 10−3

err-U2-L∞ 1.03 × 10−1 5.95 × 10−1 1.62 × 10−1 3.43 × 10−2 1.64 × 10−2
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Fig. 4. Approximate solution by the hybrid finite volume-finite element method (Density,
Horizontal velocity, Vertical velocity) for ∆t = 5 · 10−2, c = 10−3 and Re = 5000 with h = 0.7882.

Fig. 5. Evolution of errors in norms L1, L2, and L∞ as a function of h for the density, the
horizontal velocity, and the vertical velocity respectively.

Interpretation of the results:

(i) We conducted numerical simulations to
compare the exact and numerical solu-
tions for both the density and the two
components of velocity. The simula-
tions were performed over a range of
spatial discretization values, h, varying
from 1.7666 to 0.7882. This range en-
ables us to observe the behavior of the
solutions under different resolutions,
thereby highlighting the performance
of the hybrid method.

(ii) The results of the numerical simulations
reveal significant findings regarding the

convergence of the solutions:

• The errors measured in norms L1

and L2 for the three different solu-
tion types consistently approach
zero as the spatial discretization
parameter h tends toward zero.
This indicates that our numeri-
cal method is converging towards
the exact solutions with increas-
ing resolution.

• Additionally, the L∞ norm of the
two velocity components also con-
verges towards zero. This is a
positive indicator of the method’s
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accuracy, ensuring that the com-
puted velocities are reliably ap-
proximating the true velocities.

• However, it is noteworthy that
the error in the L∞ norm for the
density remains stable at 4×10−8

throughout the simulations. This
behavior suggests that while the
numerical method performs well
in achieving convergence for the
velocity components, the accu-
racy for the density may require
further examination or refinement
of the method.

(iii) Several figures were generated to illus-
trate the evolution of errors as a func-
tion of the spatial discretization step h.
These visual representations provide
insightful clarity into how the errors
decrease with smaller values of h, em-
phasizing the effectiveness of the hy-
brid method across different solution
types.

6. Conclusion

The application of the hybrid finite vol-
ume - finite element method to Kazhikhov-
Smagulov type equations has proven to be
effective in producing convergent solutions
for both the density and the velocity fields.
While the method shows promising results,
particularly in the convergence of velocity
errors, additional investigation may be war-
ranted to enhance the accuracy of the density
representation. The graphical analysis fur-
ther supports these conclusions by illustrat-
ing the relationship between discretization
and error reduction.
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