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viral, fungal, and parasitic skin infections
remain among the most prevalent health
conditions. Additionally, cNTDs account
for approximately 10% of all skin diseases,
further emphasizing the need for robust
diagnostic solutions. Given the growing
prevalence of skin conditions, early and ac-
curate diagnosis is crucial to ensure effec-
tive treatment and management. In re-
sponse to this challenge, artificial intelli-
gence (AI), particularly deep learning, has
emerged as a transformative tool for au-
tomating dermatological diagnosis. Over
the past decade, convolutional neural net-
works (CNNs) have been widely applied to
the classification of skin diseases, demon-
strating considerable success in clinical
and mobile health applications. However,
with the rapid evolution of AI technolo-
gies, newer architectures such as Efficient-
Net, Transformers, and hybrid deep learn-
ing models are being developed to opti-
mize both accuracy and computational ef-
ficiency.

Despite the progress in AI-driven skin
disease classification, a major challenge per-
sists due to the obsolescence of traditional
classification models resulting from rapid
advancements in deep learning. This re-
view addresses the evolving landscape of
AI-based skin disease classification, criti-
cally analyzing the strengths and limita-
tions of existing models. By doing so, it
seeks to highlight the need for continuous
model updates and the adoption of more
robust AI solutions to ensure accurate, scal-
able, and interpretable dermatological diag-
nosis.

This review explores recent advances in
AI-driven skin disease classification, ana-
lyzing the most widely used models, their
performance on different datasets, and their
potential to revolutionize dermatological
diagnostics. By identifying key trends
and limitations, this study aims to provide
a comprehensive resource for researchers
and healthcare professionals, facilitating
the transition to more advanced and effi-
cient AI-based diagnostic systems.

2. Methods
As part of our literature review, we

used a tool called Right Review, which
guided us in selecting a quantitative sys-
tematic review as the most appropriate ap-
proach for our research objectives. This
method, known for its rigor and repro-
ducibility, enables a structured synthe-
sis of empirical evidence and facilitates
quantitative comparisons between studies.
Consequently, we adopted the Preferred
Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) framework,
widely recognized as the gold standard for
systematic literature reviews in medical and
AI research.

2.1. Keywords
To ensure comprehensive coverage of

relevant literature, we defined a set of pre-
cise and representative keywords aligned
with our research objectives. These in-
cluded: Skin diseases, Black skin diseases,
Segmentation, Classification, Artificial in-
telligence, Machine learning, Deep learning,
and Convolutional neural network. These
keywords were selected based on their fre-
quency and relevance in dermatological AI
studies published between 2023 and 2025.

2.2. Search equations
Based on these keywords, we formu-

lated a general search equation that com-
bines terms for skin diseases, segmentation
or classification tasks, and artificial intelli-
gence methods, as follows: “Skin diseases”
OR “Black skin diseases” AND (Segmen-
tation OR Classification) AND (“Artificial
intelligence” OR “Machine learning” OR
“Deep learning” OR “Convolutional neural
network”).

This query was adapted to the syntax
requirements of each database to capture
a broad range of studies focusing on auto-
matic skin disease detection, segmentation,
and classification using AI techniques.

2.3. Article selection process
Our systematic search covered four ma-

jor academic databases: Google Scholar,
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PubMed, Scopus, and Semantic Scholar. In
total, 153 studies were initially identified
(Google Scholar: 21; PubMed: 3; Scopus:
55; Semantic Scholar: 74). After removing
10 duplicates, 143 records were screened.
During the screening phase, 14 studies were
excluded based on title and abstract rele-
vance, while 107 could not be retrieved in
full text. Of the remaining 22 studies, 7
were excluded for irrelevance to our inclu-
sion criteria. Ultimately, 15 studies were re-
tained for detailed analysis. Each selected
study was examined using a standardized
extraction grid that included:

• The architecture type (e.g., CNN,
Transformer, hybrid);

• dataset characteristics (source, size,
Fitzpatrick type distribution);

• evaluation metrics (accuracy, preci-
sion, recall, F1-score);

• computational efficiency (inference
time, model size, FLOPs).

To ensure comparability, we priori-
tized studies reporting standardized met-
rics (accuracy, precision, recall, F1-score)
on well-established benchmark datasets
(e.g., ISIC2016-2020, HAM10000). When
multiple metrics were available, we selected
those obtained on validation or test sets
to avoid overfitting bias. For models eval-
uated on the same dataset, direct perfor-
mance comparisons were made; for different
datasets, we contextualized results based
on dataset complexity and class distribu-
tion. This structured evaluation forms the
basis of our comparative analysis and sup-
ports the claims discussed in the Discussion
and Conclusion sections. The selection and
filtering process is illustrated in Figure 1,
which presents the PRISMA flow diagram
corresponding to this systematic review on
AI-based skin disease classification.

Fig. 1. PRISMA flow diagram for the article selection process.
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3. State of the art
This section provides a structured

overview of the key findings from the liter-
ature identified through the previously de-
scribed methodology. We present a synthe-
sis of the datasets commonly used in skin
lesion classification, the evaluation metrics
employed to assess model performance, and
a detailed comparative analysis of the clas-
sification models proposed in the reviewed
studies.

3.1. Skin disease datasets

Datasets are essential for the develop-
ment of effective machine learning models,
particularly in dermatology. They offer a
collection of images and metadata that en-
able algorithms to learn how to identify and

diagnose skin diseases. The table 1 provides
an overview of key datasets used in scien-
tific literature, highlighting their size, num-
ber of disease classes, and types of patholo-
gies represented.

The PAD-UFES-20 dataset [2] con-
tains a variety of skin conditions, includ-
ing Basal Cell Carcinoma (BCC), Squa-
mous Cell Carcinoma (SCC), Actinic Ker-
atosis (ACK), Seborrheic Keratosis (SEK),
Bowen’s Disease (BOD), Melanoma (MEL),
and Nevus (NEV), with Bowen’s Disease
classified as a variant of SCC.

The MSLD dataset [3] features diseases
such as Mpox (MKP), Chickenpox (CHP),
Cowpox (CWP), Measles (MSL), Hand,
Foot and Mouth Disease (HFMD), and a
healthy class (HEALTHY). An overview is
presented in Figure 2.

Fig. 2. Overview of Mpox (MKP), Chickenpox (CHP), Cowpox (CWP), Measles (MSL),
Hand, Foot and Mouth Disease (HFMD), and a healthy class (HEALTHY) [3].
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Table 1
Datasets summary.

Dataset Class Number of image
PAD-UFES-20 [2] 6 2298
MSLD [3,18] 6 755
Department of Dermatology at the Third Xiangya Hospital of Central South
University [4]

6 1366

National Skin Disease Database (NSDD) [5] 5 16313
SD-198 [6] 198 6584
Dataset of Dr. Gerbi Medium Clinic in Jimma, Ethiopia [9] 4 407
Dataset provided from photographs collected prospectively in Côte d’Ivoire
and Ghana [10]

5 1709

PH2 [7] 3 200
HAM10000 [8] 7 10015
ISIC2016 [11] 2 900
ISIC2017 [12] 3 2000
ISIC2018 [13,14] 7 10015
ISIC2019 [12,13,15] 8 25331
ISIC2020 [16] 2 33126
[17] 7 3406

The dataset from the Department of
Dermatology at the Third Xiangya Hos-
pital of Central South University [4] in-
cludes images of Melasma (ML), Naevus
Fusco-caeruleus Zygomaticus (NZ), Freck-
les (FC), Cafe-au-lait Spots (CS), Nevus of
Ota (NO), and Lentigo Simplex (LS).

The National Skin Disease Database
(NSDD) [5] includes conditions such as
Atopic Dermatitis (AD), Mycosis Fun-
goides (MF), Impetigo (IM), Herpes Sim-
plex, and Kaposi Varicelliform Eruption.

The SD-198 dataset [6] includes images
of Eczema (ECZ), Acne (ACN), and various
Cancerous Conditions (CNC).

The PH2 dataset [7] consists of 200
dermoscopic images, with three categories:
Common Nevus, Atypical Nevus, and
Melanoma. This dataset is particularly
useful for distinguishing between different
types of melanocytic lesions.

The HAM10000 dataset [8] includes
10,015 dermoscopic images encompassing a
diverse range of pigmented lesions such as
Actinic Keratosis (AKIEC), Basal Cell Car-
cinoma (BCC), Benign Keratosis (BKL),
Dermatofibroma (DF), Melanoma (MEL),
Melanocytic Nevus (NV), and Vascular Le-
sions (VASC).

The dataset of Dr. Gerbi Medium

Clinic in Jimma, Ethiopia [9] includes im-
ages of Tinea Pedis (TP), Tinea Capitis
(TC), Tinea Corporis (TCo), and Tinea
Unguium (TU).

The dataset from photographs col-
lected prospectively in Côte d’Ivoire and
Ghana [10] includes Buruli Ulcer (BU),
Leprosy (LEP), Mycetoma (MYC), Scabies
(SCA), and Yaws (YAW).

The ISIC2016 dataset [11] comprises
900 dermoscopic images categorized into
benign and malignant classes, serving as
a foundational dataset for early studies in
skin disease classification.

The ISIC2017 dataset [12] contains
2,000 dermoscopic images classified into
three categories: Melanoma (malignant
skin tumor derived from melanocytes),
Nevus (benign skin tumor derived from
melanocytes), and Seborrheic Keratosis
(benign tumor derived from keratinocytes).

The ISIC2018 dataset [13, 14] con-
tains seven classes of skin lesions, includ-
ing Melanoma (MEL), Melanocytic Nevus
(NV), Basal Cell Carcinoma (BCC), Ac-
tinic Keratosis/Bowen’s Disease (AKIEC),
Benign Keratosis (BKL), Dermatofibroma
(DF), and Vascular Lesion (VASC). An
overview is presented in Figure 3.
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Fig. 3. Overview of Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell Carcinoma
(BCC), Actinic Keratosis/Bowen’s Disease (AKIEC), Benign Keratosis (BKL), Dermatofi-
broma (DF), and Vascular Lesion (VASC) [14].

The ISIC2019 dataset [12, 13, 15] cov-
ers a wide spectrum of skin lesions, in-
cluding Melanoma (MEL), Melanocytic Ne-
vus (NV), Basal Cell Carcinoma (BCC),
Actinic Keratosis (AK), Benign Keratosis
(BK), Dermatofibroma (DF), Vascular Le-
sion (VL), and Squamous Cell Carcinoma
(SCC).

The ISIC2020 dataset [16] contains
33,126 dermoscopic images of unique be-
nign and malignant skin lesions from over
2,000 patients. This dataset is widely used
for classification and segmentation tasks.

Finally, the dataset highlighted by Jes-
sica et al. [17] consists of seven conditions:
Acne (ACN), Varicella (CHP), Eczema
(ECZ), Pityriasis Rosea (PR), Psoriasis
(PSO), Vitiligo (VIT), and Tinea Corporis
(TC). An overview is presented in Figure 4.

The diverse range of datasets available
for dermatology research plays a critical
role in the advancement of accurate and
reliable diagnostic models. These datasets
allows researchers to train and evaluate al-
gorithms on various conditions, leading to
improvements in the field of dermatological
diagnosis and treatment. More detailed in-
formation on datasets is shown in Table 1.

3.2. Performance evaluation metrics
The evaluation of skin disease classifi-

cation models was performed using stan-
dard metrics, where TP, TN, FP, and
FN represent true positives, true negatives,
false positives, and false negatives, respec-
tively.

Accuracy is the most intuitive metric
and measures the overall correctness of the
model’s predictions. It is defined as the
ratio of correctly classified instances (both
positive and negative) to the total number
of instances:

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision is a measure of how many in-
stances predicted as positive are truly pos-
itive:

Precision = TP

TP + FP
(2)

Recall, also known as Sensitivity or
True Positive Rate (TPR), measures the
ability of the model to correctly identify all
relevant instances:

Recall = TP

TP + FN
(3)
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Fig. 4. Overview of Acne (ACN), Varicella (CHP), Eczema (ECZ), Pityriasis Rosea (PR),
Psoriasis (PSO), Vitiligo (VIT), and Tinea Corporis (TC) [17].

The F1-score is the harmonic mean of
Precision and Recall, providing a balanced
measure that considers both false positives
and false negatives:

F1 − score = 2 · Precision · Recall
Precision + Recall (4)

3.3. Classification models
The classification of skin diseases us-

ing machine learning has attracted consid-
erable interest in dermatology, with numer-
ous models developed based on different
datasets, architectures, and computational
constraints. Although the reported perfor-
mance varies widely, clear trends emerge
regarding the relationship between model
complexity, dataset diversity, and diagnos-
tic accuracy.

ResNet-based models have been widely
explored due to their strong feature ex-
traction capability and efficient gradient
propagation. In [19], ResNet-18 achieved
74.27% accuracy on a combined dataset
(MSLD and PAD-UFES-20) and slightly
higher performance (74.62%) on PAD-
UFES-20 alone, suggesting that dataset

heterogeneity can introduce noise that lim-
its generalization. On the ISIC dataset,
ResNet-18 demonstrated remarkable per-
formance (98.6%) in [20], outperforming
VGG-16 and DenseNet201, which achieved
97.50% and 96.61% respectively. This
result highlights ResNet’s superior abil-
ity to handle texture and color varia-
tions, particularly in high-quality, well-
annotated datasets. However, deeper ar-
chitectures like ResNet-152 [21] showed di-
minishing returns, achieving 75.30% pre-
cision and 71.71% recall, indicating that
beyond a certain depth, overfitting and
computational cost may outweigh the ben-
efits. To address interpretability chal-
lenges, a hybrid ResNet-50 with Radial Ba-
sis Function (RBF) networks [22] achieved
balanced accuracy across ISIC2016 and
ISIC2017, demonstrating how hybridiza-
tion can enhance explainability without sig-
nificant performance loss.

VGG-based models, though historically
influential, tend to underperform on com-
plex and imbalanced datasets due to their
limited representational power. In [10],
VGG-16 was outperformed by ResNet-50
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(82.22% vs. 84.63%), underscoring the im-
portance of residual connections for sta-
ble optimization. On ISIC2017, VGG-16
reached only 70.09% accuracy [22], confirm-
ing that its deeper layers struggle to capture
fine-grained dermatological patterns com-
pared to more modern architectures.

Lightweight models such as MobileNet
have proven advantageous in resource-
constrained environments. In [17], Mo-
bileNet achieved 94.1% accuracy across
seven skin conditions, while in [4], its accu-
racy dropped to 70.39% on hyperpigmented
diseases. This contrast suggests that Mo-
bileNet’s performance depends heavily on
the dataset’s visual diversity and illumina-
tion consistency—critical factors for darker
skin tones, where contrast is typically lower.

DenseNet architectures, known for
feature reuse, produced mixed results.
DenseNet201 achieved a precision of 73.28%
on a custom dataset [4], comparable to
VGG19. This suggests that feature redun-
dancy may not necessarily enhance perfor-
mance when data diversity or annotation
quality is limited.

In contrast, EfficientNet and hybrid ap-
proaches have demonstrated strong adapt-
ability. In [23], EfficientNetV2-B0 achieved
an F1-score of 85.8% on ISIC2019, provid-
ing an optimal trade-off between accuracy
and computational efficiency. Ensemble

and hybrid frameworks further improved re-
sults: combining EfficientNet-V2 and Swin
Transformer [24] achieved 99.10% F1-score
on ISIC2018, while integrating ResNet-50
and EfficientNet with Unet3+ for joint
segmentation-classification [25] yielded a
recall of 96.45% and an F1-score of 98.78%.
These findings confirm that multi-scale fea-
ture fusion and ensemble learning signifi-
cantly enhance robustness and generaliza-
tion across heterogeneous datasets.

Finally, bio-inspired optimization tech-
niques have emerged as promising alterna-
tives. In [26], a CNN trained with the
Grey Wolf Optimization (GWO) algorithm
achieved 95.11% accuracy and 96.16% F1-
score on HAM10000, illustrating how adap-
tive optimization can improve convergence
and classification balance, especially for im-
balanced datasets.

In summary, ResNet and Efficient-
Net families dominate current research
due to their strong trade-offs between
depth, efficiency, and generalization, while
lightweight models like MobileNet remain
essential for real-time and mobile diag-
nostics. However, performance dispari-
ties across datasets underscore the ongoing
challenge of achieving fairness and reliabil-
ity, particularly for darker skin tones. A
detailed synthesis of the models and their
performance metrics is provided in Table 2.

Table 2
Performance of different classification model on various skin lesion datasets.

Method Dataset Class Precision Recall F1-score Accuracy
ResNet-18 [19] MSLD + PAD-

UFES-20
7 76.78 71.40 73.63 74.27

ResNet-18 [19] PAD-UFES-20 6 75.17 62.77 65.90 74.62
VGG19 [4] Dept. of Derma-

tology, Third Xi-
angya Hospital

– 73.28 – – –

DenseNet201 [4] Dept. of Derma-
tology, Third Xi-
angya Hospital

– 73.28 – – –
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Table 2 (continued)
Method Dataset Class Precision Recall F1-score Accuracy
MobileNet [4] – – – – – 70.39
MobileNet [17] – – – – – 94.10
ResNet-18 [20] ISIC (5 classes) 5 97.58 97.42 97.37 98.6
VGG-16 [20] ISIC (5 classes) 5 97.48 97.42 97.41 97.50
DenseNet201 [20] ISIC (5 classes) 5 97.13 97.09 97.10 96.61
EfficientNetv2-
B0 [23]

ISIC2019 8 85.80 98.00 85.80 85.50

ResNet-50 [10] Côte d’Ivoire
and Ghana
dataset

– 84.63 – – –

VGG-16 [10] Côte d’Ivoire
and Ghana
dataset

5 – 82.22 – –

EfficientNet-
V2 + Swin-
Transformer
(Ensemble DL
Model) [24]

ISIC2018 7 – 99.27 – 99.10

ResNet-152 [21] ISIC2019 8 75.30 71.71 73.01 –
ResNet-50 [27] ISIC2018 7 97.09 98.15 97.85 97.13
ResNet-50 [22] ISIC2016 2 – – – 83.02
ResNet-50 [22] ISIC2017 3 – – – 76.15
VGG-16 [22] ISIC2016 2 – – – 79.54
VGG-16 [22] ISIC2017 3 – – – 70.09
MFFDCNN-
CTDC [25]

ISIC2017 3 – 96.45 96.54 98.78

MFFDCNN-
CTDC [25]

HAM10000 7 – 86.58 89.05 98.89

GWO-CNN [26] HAM10000 7 94.56 93.88 96.16 95.11

To provide a more intuitive under-
standing of the trade-offs between model
performance and computational complex-
ity, Figure 5 presents a comparative vi-
sualization of accuracy versus model com-
plexity (measured in number of parameters
and FLOPs) for architectures evaluated on
ISIC benchmark datasets. This chart illus-
trates how ResNet-18 and EfficientNetV2-
B0 achieve competitive accuracy with rela-
tively lower computational overhead com-

pared to deeper architectures such as
ResNet-152 and DenseNet201. The visu-
alization confirms that increasing model
depth does not necessarily guarantee pro-
portional performance gains, particularly
when datasets are limited or imbalanced.
Lightweight models such as MobileNet
and EfficientNet emerge as optimal choices
for deployment in resource-constrained set-
tings, balancing diagnostic accuracy with
inference efficiency.
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Fig. 5. Accuracy versus model complexity for deep learning models in skin disease classifica-
tion.

4. Discussion

Model selection for skin disease clas-
sification depends on the target device,
dataset diversity, and computational con-
straints. Traditional architectures (ResNet,
VGG, DenseNet) remain robust baselines,
but newer models (EfficientNet, MobileNet)
introduce optimizations that improve the
accuracy-cost trade-off through depthwise
separable convolutions and compound scal-
ing. These advances enable real-time de-
ployment in resource-limited settings, crit-
ical for mobile diagnostics in low-resource
environments. Performance differences be-
tween architectures stem from design prin-
ciples and dataset characteristics. ResNet-
50 outperformed VGG-16 for tropical dis-
eases [10], leveraging residual connections
for gradient flow in heterogeneous African
clinical images. ResNet-18 excelled on
ISIC [20], benefiting from high-resolution
dermoscopic images with clear boundaries.
DenseNet201 showed feature redundancy
on homogeneous datasets, highlighting the
importance of architecture-data fit im-
portance. EfficientNetV2-B0 [23] main-
tains high precision on diverse datasets
like ISIC-2019 despite resolution variabil-
ity. Hybrid models (e.g., ResNet-50 with
RBF networks [22]) improve interpretabil-
ity through clinician-understandable deci-

sion boundaries, advancing explainable AI
in dermatology. Ensemble and multi-
scale fusion methods expand accuracy fron-
tiers. Combining architectures (Efficient-
Net+Swin Transformer [24, 25]) captures
complementary spatial and semantic fea-
tures. Bio-inspired optimization (Grey
Wolf [26]) dynamically refines parameters,
improving adaptability across diverse illu-
mination, texture, and pigmentation con-
ditions. Despite progress, dataset diversity
remains limited, particularly for dark skin
tones. Public datasets (ISIC, PAD-UFES-
20) overrepresent lighter skin types [10], bi-
asing feature extraction and reducing ac-
curacy for darker phototypes. This af-
fects generalization and raises ethical de-
ployment concerns, necessitating balanced
datasets and fairness-aware training. Op-
timizing lightweight models for mobile de-
ployment is critical for accessibility in sub-
Saharan Africa, where dermatological ex-
pertise is scarce.

5. Limitations
This review has several limitations that

should be acknowledged. First, poten-
tial publication bias may exist, as we
included only peer-reviewed studies and
preprints available through major academic
databases, potentially excluding unpub-
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lished negative results or studies in low-
impact journals. Second, our language re-
striction to English-language publications
may have excluded relevant research pub-
lished in other languages, particularly re-
gional studies from non-English-speaking
African, Asian, or Latin American coun-
tries where skin disease prevalence differs
significantly. Third, the heterogeneity of
evaluation protocols across studies compli-
cates direct comparisons; different train-
test splits, data augmentation strategies,
and validation procedures introduce vari-
ability that may affect performance bench-
marking. Fourth, limited Fitzpatrick skin
type reporting in most studies prevents sys-
tematic analysis of model fairness across di-
verse populations. Finally, the rapid evo-
lution of AI architectures means that some
models analyzed here may become outdated
quickly, necessitating continuous review up-
dates.

6. Conclusion
This study provided a systematic and

comparative analysis of recent advances in
AI-driven skin disease classification, em-
phasizing the performance, efficiency, and
fairness of deep learning architectures be-
tween 2023 and 2025. Traditional ar-
chitectures such as ResNet, VGG, and
DenseNet have consistently shown strong
performance in controlled environments but
often struggle with scalability and dataset
diversity. Moreover, the rapid evolution of
AI models raises legitimate concerns about
the obsolescence of earlier architectures, un-
derscoring the need for continuous innova-
tion to maintain clinical relevance.

Newer architectures such as Ef-
ficientNet, MobileNet, and hybrid
CNN–Transformer approaches have
emerged to address these limitations by
introducing improved feature scaling, re-
duced parameter complexity, and enhanced
adaptability to heterogeneous data. Un-
like previous reviews focusing on single
datasets or architectures, this work con-
tributes a comprehensive comparative syn-
thesis across multiple studies, supported by

a standardized evaluation grid covering ac-
curacy, precision, recall, and F1-score. By
mapping these metrics to dataset charac-
teristics (size, image quality, Fitzpatrick
distribution), our review highlights how
data imbalance, particularly the under-
representation of dark skin tones, continues
to affect model reliability and generaliza-
tion.

We also provide a cross-architectural
comparison showing that lightweight mod-
els (e.g., MobileNet, EfficientNet) perform
competitively in low-resource environments
without compromising diagnostic accuracy.
This finding has practical implications for
the deployment of mobile dermatological
applications, especially in African and low-
income regions where computational re-
sources and dermatological expertise are
limited.

In addition, emerging research trends
such as bio-inspired optimization meth-
ods (e.g., Grey Wolf Optimization) and
explainable AI frameworks aim to im-
prove interpretability, efficiency, and fair-
ness. However, a major challenge persists:
the scarcity of diverse and demographically
balanced datasets, particularly those repre-
senting darker skin tones. Addressing this
issue remains crucial to ensuring reliable,
ethical, and inclusive AI-based dermatolog-
ical diagnostics.

Future research should focus on the fol-
lowing directions:

• Building balanced and inclusive
datasets: Prioritize prospective data
collection in underrepresented regions
(e.g., sub-Saharan Africa) covering
all Fitzpatrick types (I-VI). Establish
partnerships with local dermatology
clinics in countries like Burkina Faso,
Ghana, and Kenya to capture diverse
skin conditions under varying lighting
and clinical settings;

• Integrating fairness-aware AI
strategies: Implement data re-
sampling techniques (e.g., SMOTE
for minority class oversampling, syn-
thetic image generation via GANs for
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underrepresented skin tones), adver-
sarial de-biasing methods (training
models to learn skin-tone-invariant
representations), and fairness con-
straints during optimization (en-
suring equal accuracy, sensitivity,
and specificity across demographic
groups);

• Deploying mobile diagnostic
tools: Develop lightweight models
optimized for offline inference on An-
droid devices, leveraging TensorFlow
Lite or ONNX Runtime. Pilot pro-
grams in rural African clinics can val-
idate real-world performance while
addressing connectivity and hardware
limitations;

• Continuous model updating: Es-
tablish systematic protocols for re-
training models as new architectures
and datasets emerge, preventing tech-
nological obsolescence while main-
taining clinical relevance and regula-
tory compliance.

By addressing these priorities, AI-
driven skin disease classification systems
can become more equitable, transparent,
and clinically applicable worldwide.

Abbreviations used
• AI: Artificial Intelligence

• CNN: Convolutional Neural Network

• cNTDs: Cutaneous Neglected Tropi-
cal Diseases

• FN: False Negative

• FP: False Positive

• GWO: Grey Wolf Optimization

• ISIC: International Skin Imaging Col-
laboration

• NSDD: National Skin Disease
Database

• PRISMA: Preferred Reporting Items
for Systematic Reviews and Meta-
Analyses

• RBF: Radial Basis Function

• SMOTE: Synthetic Minority Over-
sampling Technique

• TN: True Negative

• TP: True Positive

• WHO: World Health Organization
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