Engineering of Structural, Magnetic and Electronic Properties of Planar Aluminene through Transition Metal Doping: An ab initio Study
Résumé
Aluminene, a two-dimensional material composed solely of aluminum atoms, has recently attracted considerable attention due to its remarkable stability and intriguing electronic features. In this work, we focus on the effects of doping planar aluminene with 3d and 4d transition metals, using first-principles calculations based on density functional theory (DFT) as implemented in Quantum ESPRESSO with Projector Augmented Wave (PAW)PAW, , Optimized Norm-Conserving Vanderbilt (ONCV)ONCV and Ultrasoft USPP pseudopotentials. Pseudopotentials (USPP).
The results reveal that transition metal doping significantly modifies the structural, electronic, and magnetic properties of aluminene. Structural analysis indicates that while certain dopants preserve the near-hexagonal geometry, others induce strong distortions that alter the lattice parameters and bond angles. From the electronic perspective, all doped systems maintain their metallic nature, although the band structures and densities of states (DOS and PDOS) show pronounced dopant-dependent features.
A particularly notable effect is the emergence of magnetism with specific transition metal dopants, such as V, Cr, Mn, Fe, Mo, and Nd, which generate substantial magnetic moments, reaching up to 5.38 µB/cellμ_B⁄cell in the case of manganese. Conversely, dopants such as Sc, Ti, Cu, and Zn maintain a non-magnetic state. The binding energies further highlight the diverse chemical stability of the different configurations, reflecting the strength of interaction between the dopant and the aluminene host lattice.
These findings provide valuable insights into the tunability of aluminene through transition metal doping and open perspectives for its exploitation in spintronic devices.
Mots-clés
Texte intégral :
PDFRéférences
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669 (2004). DOI: 10.1126/science.1102896
Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., Le Lay, G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 108(15), 155501 (2012). DOI: 10.1103/PhysRevLett.108.155501
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 8(4), 4033–4041 (2014). DOI: 10.1021/nn501226z
Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry, 5(4), 263–275 (2013). DOI: 10.1038/nchem.1589
Kamal, C., Chakrabarti, A., Ezawa, M. Aluminene as Highly Hole-Doped Graphene. New Journal of Physics, 17(8), 083014 (2015). DOI: 10.1088/1367-2630/17/8/083014
Yuan, J., Yu, N., Xue, K., Miao, X. Stability, Electronic and Thermodynamic Properties of Aluminene from First-Principles Calculations. Applied Surface Science, 409, 85–90 (2017). DOI: 10.1016/j.apsusc.2017.02.238
Sene, P., Dioum, A., Ndiaye, S., Gueye, E. H. O., Talla, K., Beye, A. C. Stability, Electronic and Structural Properties of Aluminene from First-Principles Calculations. MRS Advances, 8(14), 666–680 (2023). https://doi.org/10.1557/s43580-023-00625-y
Malek, A., Movlarooy, T., & Pilehrood, S. (2022). Transition metals doped (3,3) armchair boron nitride nanosheet as dilute magnetic semiconductors materials for the spintronic application. International Journal of Quantum Chemistry. https://doi.org/10.1002/qua.27070
Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S., Pyykkö, P., Nieminen, R. M. Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism. Physical Review Letters, 102(12), 126807 (2009). DOI: 10.1103/PhysRevLett.102.126807
Abdelati, M. A., Maarouf, A. A., Fadlallah, M. M. Substitutional Transition Metal Doping in MoSi₂N₄ Monolayer: Structural, Electronic and Magnetic Properties. Physical Chemistry Chemical Physics, 24(6), 3035–3045 (2022). DOI: 10.1039/D1CP04191F
Yoo, H., Heo, K., Ansari, M. H. R., Cho, S. Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications. Nanomaterials, 11(4), 832 (2021). DOI: 10.3390/nano11040832
Chen, W., Chen, Q., Zhang, J., Zhou, L., Tang, W., Wang, Z., Deng, J., Wang, S. Electronic and Magnetic Properties of Transition-Metal-Doped Monolayer B₂S₂ within GGA+U Framework. RSC Advances, 14(9), 3390–3399 (2024). DOI: 10.1039/D3RA08472H
Hernández-Tecorralco, J., Meza-Montes, L., Cifuentes-Quintal, M. E., de Coss, R. Understanding the sp Magnetism in Substitutional Doped Graphene. Physical Review B, 105(22), 224425 (2022). DOI: 10.1103/PhysRevB.105.224425
Nair, R. R., Sepioni, M., Tsai, I. L., Lehtinen, O., Keinonen, J., Krasheninnikov, A. V., Thomson, T., Geim, A. K., Grigorieva, I. V. Spin-Half Paramagnetism in Graphene Induced by Point Defects. Nature Physics, 8(3), 199–202 (2012). DOI: 10.1038/nphys2183
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21(39), 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901 (2017). DOI: 10.1088/1361-648X/aa8f79
Zhu, H., Gan, X., McCreary, A., Lv, R., Lin, Z., Terrones, M. Heteroatom Doping of Two-Dimensional Materials: From Graphene to Chalcogenides. Nano Today, 30, 100829 (2020). DOI: 10.1016/j.nantod.2019.100829
Liu, J., Li, Q. Two-Dimensional Doped Materials. Magnetochemistry, 8(12), 172 (2022). DOI: 10.3390/magnetochemistry8120172
Wang, D., Li, X., Sun, H. Modulation Doping: A Strategy for 2D Materials Electronics. Nano Letters, 21(21), 9037–9045 (2021). DOI: 10.1021/acs.nanolett.1c02192
Loh, L., Zhang, Z., Bosman, M., Eda, G. Substitutional Doping in 2D Transition Metal Dichalcogenides. Nano Research, 14(6), 1668–1681 (2020). DOI: 10.1007/s12274-020-3013-4
Wang, Z., Xia, H., Wang, P., Zhou, X., Liu, C., Zhang, Q., Wang, F., Huang, M., Chen, S., Wu, P., Chen, Y., Ye, J., Huang, S., Yan, H., Gu, L., Miao, J., Li, T., Chen, X., Lu, W., Zhou, P., Hu, W. Controllable Doping in 2D Layered Materials. Advanced Materials, 33(47), 2104942 (2021). DOI: 10.1002/adma.202104942
Kumar, R., Sahoo, S., Joanni, E., Singh, R., Tan, W., Moshkalev, S., Matsuda, A., Kar, K. Heteroatom Doping of 2D Graphene Materials for Electromagnetic Interference Shielding: A Review of Recent Progress. Critical Reviews in Solid State and Materials Sciences, 47(6), 570–619 (2021). DOI: 10.1080/10408436.2021.1965954
Kumar, R., Shringi, A., Wood, H., Asuo, I., Oturak, S., Sanchez, D., Sharma, T., Chaurasiya, R., Mishra, A., Choi, W., Doumon, N., Dabo, I., Terrones, M., Yan, F. Substitutional Doping of 2D Transition Metal Dichalcogenides for Device Applications: Current Status, Challenges and Prospects. Materials Science and Engineering: R: Reports, 180, 100946 (2025). DOI: 10.1016/j.mser.2025.100946
Zhang, X., Gao, L., Yu, H., Liao, Q., Kang, Z., Zhang, Z., Zhang, Y. Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides. Accounts of Materials Research, 2(11), 1017–1025 (2021). DOI: 10.1021/ACCOUNTSMR.1C00097
Pandey, D., Kamal, C., Chakrabarti, A. First-Principles Study of Adsorption of 3d and 4d Transition Metal Atoms on Aluminene. Computational Condensed Matter, 17, e00319 (2018). DOI: 10.1016/j.cocom.2018.e00319
Pedrosa, G. R., Villagracia, A. R., Bayasen, D. S., Lin, H., Ong, H., David, M., & Arboleda, N. B. First Principles Investigation on the Nitrogen-Doped Planar Aluminene for Hydrogen Storage Application. IOP Conference Series: Earth and Environmental Science, 463, 012103 (2020). https://doi.org/10.1088/1755-1315/463/1/012103
Pandey, D., Kamal, C., & Chakrabarti, A. (2019). Strain induced magnetism and half-metallicity in alkali metal substituted aluminene. DAE SOLID STATE PHYSICS SYMPOSIUM 2018. https://doi.org/10.1063/1.5113190
Pandey, D., Kumar, S., Kumar, A., & Pathak, B. Improved Gas Adsorption on Functionalized Aluminene Surface: A First-Principles Study. Applied Surface Science, 531, 147364 (2020). https://doi.org/10.1016/j.apsusc.2020.147364
Villagracia, A., Sugimoto, K., Raghunathan, A., Goddard, W. A., III. First Principles Investigation on the Elastic Properties of Mg, Ca, K-decorated Planar Aluminene. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1–5). IEEE (2019). DOI: 10.1109/HNICEM48295.2019.9073435
Villagracia, A., Sugimoto, K., Goddard, W. A., III. First Principles Investigation on the Hydrogen Adsorption on Planar Aluminene with Boron, Carbon, and Nitrogen as Impurities. Molecular Physics, 120(6), e2086182 (2022). DOI: 10.1080/00268976.2022.2086182
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., & Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100,136406. https://doi.org/10.1103/PhysRevLett.100.136406
Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B, 50, 17953. DOI: 10.1103/PhysRevB.50.17953
Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892. https://doi.org/10.1103/PhysRevB.41.7892
D. R. Hamann, "Optimized norm-conserving Vanderbilt pseudopotentials," Phys. Rev. B 88, 085117 (2013)
G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari (2018). Standard Solid-State Pseudopotentials (SSSP) library... npj Comput. Mater., 4, 72. DOI: 10.1038/s41524-018-0100-3
Materials Cloud, QE Input Generator. Consulté à l'adresse : https://qeinputgenerator.materialscloud.io/compute/process_structure/. Last access September 18, 2025
Dal Corso, A. (2014). Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci., 95, 337–350. DOI: 10.1016/j.commatsci.2014.07.043
K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, (2014). Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci., 81, 446–452. DOI: 10.1016/j.commatsci.2013.09.005
A. Togo, I. Tanaka, Scripta Mater. 108, 1–5 (2015).
Du, L., Hasan, T., Castellanos-Gómez, A., Liu, G., Yao, Y., Lau, C., & Sun, Z. (2021). Engineering symmetry breaking in 2D layered materials. Nature Reviews Physics, 3, 193 - 206. https://doi.org/10.1038/s42254-020-00276-0
Zhang, M., Han, N., Wang, J., Zhang, Z., Liu, K., Sun, Z., Zhao, J., & Gan, X. (2022). Strong Second Harmonic Generation from Bilayer Graphene with Symmetry Breaking by Redox-Governed Charge Doping.. Nano letters. https://doi.org/10.1021/acs.nanolett.1c04359
Zhang, Y., Huang, D., Shan, Y., Jiang, T., Zhang, Z., Liu, K., Shi, L., Cheng, J., Sipe, J., Liu, W., & Wu, S. (2018). Doping-Induced Second-Harmonic Generation in Centrosymmetric Graphene from Quadrupole Response.. Physical review letters, 122 4, 047401. https://doi.org/10.1103/PhysRevLett.122.047401
Paidi, V., Jung, E., Lee, J., Lee, A., Shepit, M., Ihm, K., Lee, B., Van Lierop, J., Hyeon, T., & Lee, K. (2022). Robust Room Temperature Ferromagnetism In Cobalt Doped Graphene by Precision Control of Metal Ion Hybridization. Advanced Functional Materials, 33. https://doi.org/10.1002/adfm.202210722
Tuček, J., Błoński, P., Ugolotti, J., Swain, A., Enoki, T., & Zbořil, R. (2018). Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications.. Chemical Society reviews, 47 11, 3899-3990. https://doi.org/10.1039/c7cs00288b
Nguyen, D., Guerrero-Sanchez, J., & Hoat, D. (2024). Searching for new two-dimensional spintronic materials: Doping-induced magnetism in graphene-like SrS monolayer. Physica E: Low-dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2024.116003
Renvois
- Il n'y a présentement aucun renvoi.