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Résumé:
Nous proposons l’étude de l’écoulement du Liquide Cérébro-Spinal (LCS) dans un quart de tore positionné

verticalement, en partant des équations de Navier-Stokes. Compte tenue de la forme curviligne de la géométrie

étudiée, ces équations formulées dans le système de coordonnées cartésiennes seront très complexes à résoudre,

aussi bien du point de vu théorique que numérique. La démarche choisie ici est donc de transformer les équations

du mouvement, pour ramener le domaine curviligne en un domaine rectangulaire représenté par le système de
coordonnées toriques. Afin de généraliser le problème et de générer les paramètres de contrôle, les équations

conservatives sont mises sous forme adimensionnelles et complétées par les conditions initiales et aux limites.
Le système d’équations obtenu est fermé mais est fortement non-linéaire, donc le choix d’une technique de
résolution numérique s’impose. L’algorithme de résolution numérique choisi est basé sur une discrétisation

spatiale par différences finies, et une méthode de type projection-correction permettant le calcul découplé du
champ de vitesse et celui du champ de pression. Les champs de vitesse sont présentés et analysés pour
différentes valeurs du nombre de Reynolds et du nombre de Froude.

Mots clés : Équations de Navier-Stokes, Géométrie curviligne, Hydrocéphalie, Dérivation Ventriculo-

Péritonéale, Liquide Cérébro-Spinal.
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1. Introduction
L’hydrocéphalie est un désordre de l’hydrodynamique
du Liquide Cérébro-Spinal (LCS) dans les ven-
tricules. Cette condition, très fréquente chez les enfants
issus de milieux sociaux défavorisés, si elle n’est pas
traitée conduit à une augmentation de la Pression
IntraCranienne puis à une expansion du crâne. Ce qui
peut induire des dommages au cerveau ou même

entraîner la mort. La solution la plus courante adoptée

par les neurochirurgiens pour traiter l’hydrocéphalie est
de drainer de manière sécuritaire l’excès du LCS des
ventricules vers la cavité péritonéale grâce à un
appareil de dérivation ventriculo-péritonéale (DVP)
[1–3]. Mais plusieurs défaillances mécaniques de la
DVP qui nécessitent des révisions chirurgicales sont
notées durant les deux premières années post-
opératives (environ 50% les deux premières années et
100% dans les dix années après l’implantation). Ces
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défaillances sont le plus souvent causées par des
problèmes de fonctionnement de la valve qui avec le
cathéter ventriculaire et le cathéter péritonéal, constitue
l’une des composantes de la DVP [2, 4, 5]. La
conséquence pour les patients, leurs familles et le
neurochirurgien constitue un énorme impact social,
économique et médical, avec en plus 100 000
nouveaux cas d’hydrocéphalie estimés par année en
Afrique Sub-Saharienne [6–9].

Depuis le premier appareil de dérivation implantée plus
de soixante-dix ans plus tôt, très peu de progrès

techniques ont été notés sur les nouveaux appareils.
Ces dernières décennies, plusieurs études sur la
conception d’une nouvelle génération de valves
intelligentes ont été menées. Mais les solutions pro-
posées par les chercheurs et les fabricants sont très

couteuses à implémenter et non ergonomiques alors
que les dérèglements de la valve sont d’origine
hydrodynamiques. Et malgré les avancés enregistrés en
neurochirurgie, la dérivation par valve reste le
traitement de choix pour environ 80% des patients.
Aschoff et al. [2] avancent que le principal facteur de
dysfonctionnement de l’appareil de dérivation qui est
du à sa mal disposition, surtout au niveau du cathéter

ventriculaire, est très peu documenté. Et que ces
dysfonctionnements sont rarement compris comme
étant des échecs chirurgicaux. Les différents types de
valve disponibles sur le marché (environ 200),
présentent des problèmes de fonctionnements
hydrauliques que le patient soit en position debout ou
en position couché, et au mieux admettent un
compromis pour fonctionner quelque soit la posture.

Notre objectif est de montrer que les dérèglements de
la valve sont d’origine purement hydrodynamique et
que l’écoulement en sortie de cathéter peut être

maîtrisé, en développant un modèle théorique et
numérique de l’écoulement en amont de la valve. Ce
papier va se concentrer sur l’influence qu’on les
paramètres physiques comme le nombre de Reynolds et
le nombre de Froude sur la topologie de cet
écoulement. Ensuite les cas de figure où les vitesses en
sortie de cathéter sont modérées seront repérés

2. Matériels et méthodes
Dans cette section, la méthode de modélisation

théorique adoptée, et la justification de ce choix basé

sur la physique du problème, qui nous a permis
d’établir nos modèles d’équations toriques seront
présentées. Et du fait de la forte non-linéarité des
équations de Navier-Stokes qui décrivent le
mouvement, et de la difficulté à modéliser le terme de
gradient pression, l’alternative à un choix de résolution

analytique est une approche par approximation
numérique. Notons que notre application est dans le
domaine médical ici et donc la pression représentant

une variable fondamentale, ne pourra être ignorée tel
que c’est parfois le cas en mécanique des fluides par
l’adoption de la méthode de vorticité-fonction de
courant par exemple. Donc des méthodes de
discrétisation temporelle et de discrétisation spatiale

ont été investiguées afin d’adopter celles les plus
convenables pour l’approximation de nos équations. Le
terme temporel pourra être discrétisé grâce une
méthode prédicteur-correcteur. Le choix de ces
méthodes de discrétisation numériques sera brièvement

abordé à la fin de cette section.

2.1. Les équations du mouvement en

variables primitives

Du théorème de transport, est déduit la forme naturelle
des équations de l’écoulement qui sont des équations

sous forme conservative. Et dans le cas de
l’écoulement incompressible d’un fluide newtonien à

propriétés physiques constantes qui nous intéresse dans
notre étude, nous avons :

 [Eq. 1]

 représente la gravité et ∆ est l’opérateur laplacien.
Nous avons quatre inconnues qui sont les trois

composantes du champ de vitesse   et la pression p et
trois équations pour chaque ligne de coordonnées dans
une représentation trois dimensions. Si la masse
volumique du fluide est supposée constante, ces
équations seront alors complétées par l’équation de
continuité sous la forme suivante :

                                                               [Eq. 2]

Ces équations du mouvement sous forme vectorielle
sont fermées par les conditions aux limites et initiales
et sont valables quelque soit le système de coordonnées

choisi, mais c’est la géométrie du cathéter ventriculaire
va nous renseigner sur le système de coordonnées le
mieux adapté pour la formulation théorique des
équations notre problème.

2.2. Géométrie du cathéter ventriculaire

La zone de l’écoulement qui nous intéresse pour notre
étude se déroule dans le cathéter ventriculaire, c’est-à-

dire de l’entrée du fluide cérébro-spinal dans le
système de dérivation jusqu’à la valve (figure 1). La
forme géométrique de cette partie est curviligne et est
similaire à celle d’une portion de tore. Nous
expliquerons donc le choix du système de coordonnées

toriques plutôt que le système usuel de coordonnées

cartésiennes, et aussi la technique de transformation
qui nous a permis de générer cette géométrie torique.
La forme des équations, imposée par le profil
curviligne du cathéter, nous a conduit à choisir des
techniques analytiques adaptées qui nous permettent
d’éviter de grandes difficultés pour les formulations
théorique et numérique, comme par exemple la paroi
du cathéter qui dans ce cas pourra coïncider avec une
des surfaces de coordonnées. Les équations du
mouvement adimensionnalisées pourront être

exprimées dans le nouveau système de coordonnées
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toriques après avoir défini les vecteurs de base et la
métrique de l’espace.

Figure 1: Géometrie du cathéter ventriculaire. Position
debout du patient (gauche) et coupe d’une section droite
du cathéter (droite).

Notre géométrie est visiblement de type curviligne et
l’écriture de notre problème à l’intérieur de notre
domaine d’étude dans le système de coordonnées

cartésiennes sera simple, mais posera des difficultés à
plusieurs niveaux. Comme la difficulté à paramétrer

simplement l’équation de la paroi et celle de bien poser
les conditions aux limites du problème au niveau de la
paroi mais aussi le problème du maillage aux
frontières. Ces contraintes, imposées par un domaine
aux frontières courbes, peuvent être évitées en optant
pour le domaine rectangulaire du système de
coordonnées torique obtenu après transformation des
coordonnées.

2.3. Formulations des équations de

l’écoulement dans le cathéter ventriculaire

Nous nous intéressons à la transformation conforme

suivante qui vérifie que les conditions de Cauchy-

Riemann et permet de faire coïncider les frontières

courbes de notre problème avec une ou plusieurs lignes

de coordonnées [10] :

                                          [Eq. 3]

(r, Ɵ, φ) représente le système de coordonnées

thoriques, et f1(r,φ) est la fonction primitive génératrice

de l’espace où se déroule l’écoulement : 

f1(r,φ) = R + r cos φ

Les équations du mouvement sont exprimées sous une

forme générale et conservative dans un système

orthogonal de coordonnées curvilignes, avant d’être

formulées dans le cas particulier du système de

coordonnées toriques. Le problème est généralisé en

réduisant le nombre de ses paramètres grâce à une

étude adimensionnelle qui fournit des équations sans

unités. On arrive finalement aux équations suivantes

avec toutes les grandeurs physiques qui sont normées :

                                                            [Eq. 4]

         [Eq. 5]

Avec  le terme source qui comprend les termes de

gradient de pression et de gravité. Et le tenseur qui

comporte les flux de diffusion et d’advection de

l’écoulement. La condition initiale et les conditions aux

limites sur la vitesse et la pression données par :

 Conditions initiales :       

 A l’entrée : 

 Sur la Paroi : 

2.4. Méthodes d’approximation numériques

choisies

En pratique, le découplage entre le champ de vitesse et
le champ de pression est résolu par une méthode à pas
fractionnaire ou encore une méthode prédicteur-

correcteur [11, 12]. Pour cette discrétisation temporelle
l’équation 1 se met sous la forme d’une équation de
type Cauchy suivante :

                                                            [Eq. 6]

Avec  qui comprend le reste des termes. Cette
équation est résolue en deux étapes en utilisant le
schéma de Adams-Bashforth. Dans la première étape,

celle de prédiction, une vitesse intermédiaire est
introduite à chaque pas de temps ne satisfaisant pas à la
contrainte d’incompressibilité. Cette vitesse n’a pas de
sens physique et vérifie les conditions aux limites du

problème de Navier-Stokes. Le terme de   sera
ignoré pendant cette étape. La seconde étape qui est
l’étape de projection consiste à corriger la vitesse en la
projetant sur l’espace des champs à divergence nulle.
C’est-à-dire que la pression sera utilisée pour projeter
la vitesse intermédiaire sur un espace où le champ de
vitesse ne dépend pas de l’équation de continuité, afin
d’obtenir les champs de vitesse et de pression au temps
de calcul. La pression agit comme un terme correcteur
et la contrainte d’incompressibilité est réalisée à cette
étape. La discrétisation spatiale des termes de
l’équation 5 est réalisée en utilisant la méthode des
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différences finies et un algorithme de résolution itératif

a permi de résoudre le schéma numérique obtenu.

3. Résultats

Figure 2: Évolution du profil de vitesse dans le temps
pour différentes positions dans le cathéter ventriculaire
pour Re = 0.5 et Fr = 0.05.

Figure 3: Évolution du profil de vitesse dans le temps 

pour différentes positions dans le cathéter ventriculaire 

pour Re = 0.5 et Fr = 0.1.

Pour nos simulations, un profil de vitesse carré est
injecté à l’entrée de la conduite (paroi supposée rigide)
en θ = 0. On considère une coupe en φ = 0 dans la
partie supérieure par rapport à l’axe de la conduite et
une autre coupe en φ = ᵰ� dans la partie inférieure. La
ligne de coordonnée er varie de 0 à r0 = 1. Pour un
facteur de forme R/r0 = 100 fixé et deux valeurs de Re,
nous avons regardé l’effet de Fr sur les résultats en
respectant certains critères de paramètres de simulation
pour notre application médicale. Regardons alors
l’évolution de ce profil carré dans le temps pour
différentes positions dans un microcanal dans un repère

local. Pour notre application médicale les écoulements

sont très rampants, donc les valeurs de Re qui nous
intéressent sont très faibles (de l’ordre de au plus 1), et
de trop grandes vitesses risquent d’entraîner des
coefficients de frottement importants, ou bien dans le
cas d’une paroi flexible, des amplitudes de vibrations

élevées. Ce qui a comme effets indésirables

l’accélération de l’usure et aussi des risques de
sensation de douleur dans le corps. Nous allons repérer

quelles sont les valeurs de Fr à prendre en compte pour
maîtriser l’écoulement à la sortie de la conduite qui
subit fortement l’effet de la pesanteur.
Quand on rentre dans la conduite avec un profil de
vitesse carré, donc une vitesse constante partout sauf à
la paroi où la vitesse est nulle, les effets de viscosité au
niveau de la paroi entraînent de fort gradient de vitesse
au voisinage de la paroi. Les effets de dissipation sont
importants à ce niveau. Et puisqu’on a des gradients
positifs dans cette zone, nous aurons une compensation
d’un autre côté. Cette compensation ne peut se faire
qu’au cœur de l’écoulement, avec des gradients
négatifs proche de l’axe et une vitesse élevée sur l’axe.
Cette analyse se fait surtout dans les premiers temps de
calcul pendant le régime transitoire où l’écoulement

n’a pas encore eu le temps de s’organiser (les deux
premières lignes de profil sur chaque planche : figures
2-5). Mais quand on laisse assez de temps au système

de s’organiser, donc aux derniers temps de calcul, le
régime devient établi avec les effets d’entrée qui
s’estompent. Par exemple, on voit les effets de gradient
de vitesse négatifs s’atténuer. Mais si dans les derniers
temps de calculs, ces effets persistent, on doit regarder
plus attentivement les facteurs qui les minimisent.

Pour un Re = 0.5 et un Fr = 0.1 (figure 3), la longueur
d’entrée peut aller jusqu’à environ ᵰ�/3 de l’entrée au
temps de calcul 0.5 s, donc plus proche de la sortie du
cathéter. L’amplitude des vitesses devient également

plus importante à partir de θ = ᵰ�/3 où l’écoulement est
régi par la pesanteur. Alors que proche de l’entrée, la
pression est l’unique moteur du mouvement comme
dans le cas de l’écoulement dans une conduite droite
horizontale. Pour une même valeur du nombre de
Reynolds mais une valeur du nombre de Froude de
moitié (figure 2), les effets de pesanteur sont dix fois
plus importants que les effets de viscosité dans
l’écoulement. Les forts gradients de vitesse proche de
la paroi et les effets de dissipation s’atténuent, ainsi
que le fluide qui avait ralenti au voisinage de l’axe de
la conduite pour respecter la condition de débit. Donc
ici une longueur d’entrée un peu plus réduite pour un
nombre de Froude plus faible. D’autres tests réalisés et
non présentés dans ce papier montrent pour un nombre
de Reynolds de 0.5 le nombre de Froude minimal
critique est autour de 0.035, où les effets de pesanteur
dominent dans l’écoulement qui s’emballe.

Si on considère un nombre de Reynolds plus grand, Re
= 1 (figure 4) les effets de convection sont équivalents

aux effets de diffusion dans l’écoulement. Pour Fr =
0.05, le régime transitoire se déroule plus rapidement
avec une longueur d’entrée de conduite moins
importante (ᵰ�/6 aux grands temps de calcul). Si la
gravité devient plus importante comparée aux effets
convectifs avec Fr = 0.1 (figure 5), l’amplitude de la
vitesse augmente avec une longueur d’entrée toujours
minimale. Donc la longueur d’entrée peut être

minimisée en considérant des Re pas trop faibles, sinon
la sensibilité de l’écoulement à la pesanteur dans la
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zone proche de la sortie du cathéter sera encore plus
importante. Dans ce cas, le nombre de Froude ne doit
pas aller en deçà d’une valeur critique.

Figure 4: Évolution du profil de vitesse dans le temps 

pour différentes positions dans le cathéter ventriculaire 

pour Re = 1 et Fr = 0.05. 

Figure 5: Évolution du profil de vitesse dans le temps
pour différentes positions dans le cathéter ventriculaire
pour Re = 1 et Fr = 0.1.

4. Conclusion et perspectives

Dans ce papier, des résultats sur les effets de la
variation des nombres de Reynolds et de Froude sur
l’écoulement dans le cathéter ventriculaire d’une DVP
ont été présentés et analysés. Les types d’écoulement

étudiés sont très rampants dans une conduite déformée.

Dans ce cas le paramètre physique le plus important à
étudier devient le nombre de Froude, car il s’agit de
comparer les effets de pesanteur aux effets de diffusion
dans l’écoulement. Après avoir repéré le régime établi

de l’écoulement où le profil carré tend vers un profil
parabolique, les critères sur la valeur minimale de Fr
pour des Re faibles doivent être formulés pour éviter

l’emballement de l’écoulement à la sortie causé par la
gravité. Par exemple pour Re = 0.5, on s’approche du
régime critique dans la partie proche de la sortie du
cathéter quand Fr est 10 fois plus petit que Re. Alors
que proche de l’entrée du cathéter, c’est la pression qui
est le moteur du mouvement.

Nous avons pu mettre une place un formalisme
théorique et un code de calcul qui peuvent être util-
isés dans plusieurs domaines d’ingénierie, où on
retrouve l’interaction entre un écoulement de fluide
avec des géométries curvilignes (mécanique,

hydraulique, chimique,...).

Mais en réalité nous avons une paroi souple et
extensible qui subit une force de la part du fluide et qui
en retour réagit sur ce dernier. Donc au lieu d’étudier

uniquement le problème hydrodynamique comme c’est
notre cas, il faudra regarder le couplage avec l’équation

de déformation de la paroi, soit les effets de gradients
transversaux des vitesses sur la dynamique de la paroi.
Dans ce cas le problème sera encore plus sensible aux
amplitudes de vitesse élevées. D’un autre côté, un
profil type fonction périodique avec un écoulement à

l’entrée pulsé et un fluide LCS réel peuvent être testés,

avec des modèles pilotés par l’Intelligence Artificielle
disponibles. D’autres types d’appareil de DVP avec
cathéter ventriculaire perforé, conduite à section
ellipsoide et valves intelligents seront étudiés pour la
suite de ce projet.
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