Apport de la minéralogie et de la cristallochimie à la connaissance des conditions de mise en place de l'intrusion mafique-ultramafique à Ni-Cu-EGP de Samapleu (complexe lité Yacouba, ouest de la Côte d'Ivoire)

Gnamba Emmanuel Franck GOUEDJI1*, Marc-Antoine AUDET2, Yacouba COULIBALY3, Christian

PICARD⁴, Naomi OUATTARA⁵, Bouaké BAKAYOKO²

 1 : Université de Man - BPV20 Man - Côte d'Ivoire
 4 : Université de Franche-Comté (UMR 6249), 16, route de Gray,

 2 : Sama Nickel-CI sarl, 2 plateaux Vallons, 28 BP 1467, Abidjan 28,
 5000 Besançon, France.

 Côte d'Ivoire
 5. BNETD Cocody-Côte d'Ivoire, 04 BP 945, Abidjan 04, Côte d'Ivoire.

 3 : LGSM, UFR STRM, Université Félix HOUPHOUËT-BOIGNY
 *Auteur correspondant: gouedjiemmanuel@gmail.com; BPV20 Man - Côte d'Ivoire.

 22 BP 582 Côte d'Ivoire
 Côte d'Ivoire

Résumé

Le dyke de Samapleu est localisé dans les régions de Biankouma et de Sipilou (Ouest de la Côte d'Ivoire). Selon la chimie des minéraux de cette intrusion, elle se serait formée à partir d'un magma d'origine mantellique de composition basaltique par cristallisation fractionné ; caractérisé par de faibles teneurs en Cr2O3, Na2O et TiO2, un enrichissement modéré en fer (2 à 6 %) dans les CPX et des valeurs en MgO élevées au sein des minéraux des lithologies des occurrences de l'Extension 1 et de la zone principale de Samapleu.

Par ailleurs, les lithologies de cette intrusion présentent des structures pétrographiques (kinks de déformation, des extinctions onduleuses) et des caractéristiques cristallochimiques et minéralogiques (teneurs élevées en aluminium dans les OPX, fortes teneurs en anorthite dans les espèces de plagioclase, présence d'hercynite et de magnétite chromifère). Ces caractéristiques semblent indiquer que l'intrusion de Samapleu (2,09 Ga) a pu être métamorphisée dans le faciès granulite ; alors que le métamorphisme granulitique décrit dans cette région et ayant affecté l'encaissant granulitique de l'intrusion de Samapleu a été daté du Libérien (2,8 Ga). Ces caractéristiques qui correspondent à celles d'un métamorphisme granulitique sont en réalité la résultante des conditions de mise en place de l'intrusion (P = 7,5±1 kbar et T = 850° C ± 100° C) ; c'est-à-dire une mise en place en base de croûte à environ 22 km. Ainsi, l'intrusion de Samapleu pourrait être contemporaine de la convergence tectonique éburnéenne entre la croûte birimienne et la croûte archéenne entre 2,1 et 2,05 Ga.

Mots clés: Minéralogie et cristallochimie, Dyke de Samapleu, Complexe lité Yacouba, Archéen - Paléoprotérozoïque, Côte d'Ivoire.

Abstract

The Samapleu dyke is located in the Biankouma and Sipilou regions (western Ivory Coast).

According to the mineral chemistry of this intrusion, it is formed from a magma of mantle origin of basaltic composition by fractional crystallization; characterized by low contents of Cr_2O_3 , Na_2O and TiO_2 , moderate iron enrichment (2-6%) in CPX and high MgO values in the lithologies of Extensions 1 and Main Zone occurrences of Samapleu.

Moreover, this intrusion lithologies present petrographic structures (deformation kinks and undulous extinction), crystal-chemical and mineralogical characteristics (high aluminum content in OPX, high anorthite content in plagioclase species, presence of hercynite and chromite magnetite). These features suggest that the Samapleu intrusion (2.09 Ga) could be metamorphosed into the granulite facies; while the granulitic metamorphism described in this region and affecting the granulitic host of the Samapleu intrusion has been dated to Liberian (2.8 Ga). These characteristics, which correspond to those of a granulitic metamorphism, are actually the result of the conditions of establishment of the intrusion ($P = 7.5 \pm 1$ kbar and $T = 850 \circ C \pm 100 \circ C$); a crust base emplacement at about 22 km. Therefore, Samapleu intrusion could be coeval of the Eburnean tectonic convergence between the birimian crust and the archean craton between 2.1 and 2.05 Ga.

Keywords: Mineralogy and crystal-chemistry, Samapleu dyke, Yacouba layered complex, Archean-Paleoproterozoic, Ivory Coast.

1. Introduction

Le dyke de Samapleu appartient au complexe Yacouba qui a été identifié en 2012 dans les régions de Biankouma et de Sipilou (Ouest de la Côte d'Ivoire), par la société minière Sama Nickel-CI. Le complexe Yacouba daté de 2,09 Ga (âge U/Pb obtenu sur rutile), est intrusif dans les granulites gneissiques archéens du domaine Kenema-Man de la dorsale de Man. Ce dyke contient la minéralisation sulfurée de Ni-Cu de Samapleu. Cette intrusion qui est constituée de trois entités à savoir l'occurrence principale (SM), l'Extension 1 (E1) et l'occurrence de Yorodougou (Yo), est composée d'unité mafique (gabbro-norite, norite, anorthosite) et d'unité ultramafique (péridotite, pyroxénite et chromitite). Les caractéristiques pétrographiques et lithologiques de cette intrusion montrent des marqueurs de la déformation à haute température (contours rectilignes avec joints triples d'environ 120° par endroits, des kinks de déformation, des extinctions onduleuses). Ces observations semblent indiquer que cette intrusion a été affectée par un métamorphisme de haut grade. L'analyse pétrographique et cristallochimique permettra de relever les conditions de formation des lithologies et la probable influence d'un métamorphisme de haut grade sur l'intrusion.

Après le rappel des principales caractéristiques géologiques du dyke de Samapleu, l'article étudie la cristallochimie des minéraux de l'intrusion pour connaître les conditions de formation des

lithologies et identifier les phénomènes ayant affectés ce dyke.

2. Contexte géologique du dyke de Samapleu

Le dyke mafique et ultramafique de Samapleu est localisé au sud du craton ouest-africain (constitué de terrains archéens et paléoprotérozoïques) dans la dorsale Man-Leo (Fig. 1a, Berger et al., 2013).

En Côte d'Ivoire, la dorsale Man-Leo (Fig. 1a) a été affecté à l'ouest par les orogénèses Léonien (3,3-3,0 Ga) et Libérien (2,9-2,7 Ga), deux événements majeurs magmatiques et métamorphiques (Camil, 1981, 1984; Kouamelan et al., 1997) et à l'Est par l'orogénèse Éburnéen (2,2-2,0 Ga ; Pitra et al., 2010). La dorsale Man-Leo située à l'ouest, a été profondément remaniée à certains endroits durant l'événement tectono-métamorphique éburnéen, contemporain de la genèse des formations birimiennes (Kouamelan et al., 1997 ; Thieblemont et al., 2004 ; Gouedji et al., 2014 ; Kouamelan et al., 2015 ; Kouamelan et al., 2017).

Le dyke de Samapleu (2,09 Ga, âge U-Pb obtenu sur rutile; Gouedji, 2014; Gouedji et al, 2014), appartient au complexe mafique-

Figure 1 : Cartes géologiques schématiques de la région d'étude. **a.** Bouclier Ouest-africain (Berger et al., 2013); **b.** Craton de Man dans l'ouest de la Côte d'Ivoire (Pitra et al., 2010) ; carré jaune = zone de Sipilou-Biankouma avec indication du complexe lité Yacouba (Gouedji et al. 2014).

ultramafique Yacouba situé dans les régions de Biankouman et de Sipilou, au nord de la faille de Danane-Man (Fig.1b).

Ce dyke est intrusif dans les formations granulitiques (3,05 Ga), charnockites et jotunites-enderbites (2,8 Ga; Kouamelan, 1996; Kouamelan et al., 1997; Pitra et al., 2010; Gouedji et al., 2014). Il comprend des assemblages ultramafiques (péridotite, pyroxénite et chromitite), des assemblages mafiques (gabbro-norite, norite, anorthosite) et une zone hybride au contact de l'intrusion et de l'encaissant granulitique (Fig. 2, Gouedji et al 2014; Gouedji, 2014). Ces formations sont minéralisées en sulfures de nickel-cuivre (pyrrhotite, pentlandite, chalcopyrite) et en minéraux du Groupe de Platine (MGP). Cette intrusion est composée de l'occurrence principale (SM), celle de l'Extension 1 (E1) et enfin celle de Yorodougou (Yo; Fig. 2). L'extension 1 s'étend sur plus de 2 km à la surface, varie de 60 à 200 m d'épaisseur, avec une direction NE-SO et un pendage de 70° - 80° vers le SE. Les horizons mafiquesultramafiques sont disposés de manière rythmique et symétrique avec les lithologies ultramafiques en bordure, celles mafiques étant au centre. L'occurrence de Yorodougou orientée ENE-OSO, a une longueur de 1,5 km en surface avec un pendage de 70° - 80°

Figure 2 : Carte géologique schématique de la zone de Samapleu comprenant les occurrences mafiques-ultramafiques de la zone principale - Extension 1 – Yorodougou avec les roches de la région (gneiss granulitiques, quartzites, jotunites et enderbites) Gouedji et al., 2014. Occurrence Extension 1 = E1; Occurrence de la zone principale = SM; Occurrence de Yorodougou = Yo; Samapleu = S; Gangbapleu = G; Yorodougou = Y.

vers le SE. Celle de la zone principale, moins longue et de forme arrondie, est orientée NO-SE à SO-NE et a un pendage subvertical. En outre, les contacts entre les différentes lithologies de l'intrusion de Samapleu sont redressés.

Ces occurrences semblent former en surface un pli avec un axe subvertical et un plan axial parallèle à la foliation régionale (NE-SO). En profondeur (à environ 600 m de la surface du sol), à l'Extension 1, l'intrusion s'aplatit pour former un type de structure en entonnoir qui se connecte sur l'autre bord avec l'occurrence de la zone principale. Les deux occurrences (SM et E1) se rejoindraient pour former une seule entité avec une continuité latérale du corps mafique-ultramafique.

L'intrusion de Samapleu a été affectée par une déformation fragile; tout d'abord un ensemble de failles sénestres orientées NE-SO qui recoupent le pli et affectent les occurrences E1 et SM. Ensuite, dans la zone de SM, le dyke est affecté par une faille inverse de direction NO-SE avec un plongement de 40° à 50° vers le SO. Plus tardivement, des failles verticales orientées N-S, parallèles à la faille de Sassandra et une faille dextre orientée NO-SE recoupent les structures antérieures (Fig. 2 ; Gouedji et al., 2014). Ces failles ont des directions similaires aux directions observées dans les assemblages birimien (Coulibaly et al., 2012).

3. Approche méthodologique

La lithologie de l'intrusion de Samapleu a été caractérisée à partir de données de plus de 35000 m de forages carottés. Ces forages ont été décrits macroscopiquement et plus de 60 échantillons de roches ont

(50)

été prélevés pour la confection de lames minces polies pour affiner la caractérisation des minéraux des différentes lithologies.

Les compositions chimiques des minéraux (silicates et oxydes) des occurrences SM et E1 de Samapleu ont été déterminées à la microsonde électronique. Les principaux minéraux analysés sont l'olivine, l'orthopyroxène, le clinopyroxène, l'amphibole, les spinelles, le plagioclase et la serpentine.

Les échantillons des occurrences E1 ont été analysées à la microsonde électronique de type JEOL JXA-8200 et de type JEOL JXA-8230 respectivement à l'Université de Lausanne en Suisse et à l'Institut Supérieur du Tertiaire (IST) de Grenoble en France. L'analyse pour la quantification de la composition chimique des minéraux s'est faite sous une tension d'accélération de 15 kV, une intensité du courant de 15 nA, un faisceau de 5 à 10 µm et un temps de comptage pouvant excéder les 10 secondes par élément analysé.

Les échantillons de l'occurrence SM ont été analysés à la microsonde électronique de type CAMEBAX au laboratoire mixte du BRGM-CNRS-Université d'Orléans en France. L'analyse des minéraux a été faite sous une tension d'accélération de 15kV, pour une intensité de courant de 10 ou 12 nA et un temps de comptage de 10 secondes.

Les diverses variétés de serpentines des péridotites des occurrences E1 et SM ont été caractérisées par la spectrométrie Raman à l'Ecole Normale Supérieure (ENS) de Lyon. Cette analyse utilisée pour différencier les variétés structurales des serpentines avec des spectres référence (Lemaire, 2000; Auzende, 2003; Auzende et al., 2004; Groppo et al., 2006; Schwartz et al., 2012) se fait par couplage d'un microscope optique avec un spectromètre en excitant un matériau.

4. Résultats

4.1. Pétrographie du dyke de Samapleu

L'analyse d'une soixantaine échantillons de roches prélevées dans les zones SM et E1 (Tab. I) montrent à travers la pétrographie et la minéralogie des lithologies que les séquences mafiquesultramafiques du dyke sont constituées de cumulats. Ces assemblages minéralogiques au sein des lithologies de l'intrusion sont résumés dans le tableau I.

Au sein de l'unité ultramafique du dyke de Samapleu, la péridotite (lherzolite, harzburgite et dunite) partiellement serpentinisée et magnétique (Fig. 3a) est composée majoritairement d'olivine (minéral cumulus) associée aux pyroxènes (orthopyroxène (OPX) et clinopyroxène (CPX)) et à l'amphibole, tous interstitiels subautomorphes à xénomorphes.

La chromitite comme la webstérite à spinelles et/ou chromite formant des bandes centimétriques à décimétriques sont magnétiques. Elles sont de couleur noire, massives, denses et composées de chromite et/ou de spinelles interstitiels avec des textures en filet (Fig. 3b) qui entourent les OPX, CPX et l'olivine. Accessoirement le plagioclase et la phlogopite interstitiels sont présents, de même que l'amphibole.

Dans la webstérite à olivine (Fig. 3c), l'OPX (environ 40 % de la roche) incrusté de chadocristaux d'olivine ou de CPX par endroit est un intercumulus. Les spinelles interstitiels comme l'amphibole, se trouvent par endroit en inclusion dans

les pyroxènes. Certains échantillons de cette formation sont partiellement serpentinisés et magnétiques.

La webstérite est constituée majoritairement d'OPX et de CPX, automorphes à subautomorphes avec de rares cristaux d'olivine poecilitiques (Fig. 3d). Les CPX disparaissent par endroits et donnent lieu à des orthopyroxénites. Les spinelles allotriomorphes sont interstitiels ou en exsolution dans les pyroxènes avec de l'amphibole.

La webstérite à plagioclase est composée majoritairement de plagioclase xénomorphe à subautomorphe, interstitiel entre les cristaux d'OPX, de CPX et d'amphibole. Les spinelles sont disparates dans cette formation et la phlogopite est de plus en plus présente.

Au sein de l'unité mafique, le gabbro-norite est constitué essentiellement de plagioclase avec de faible proportion d'OPX, de CPX et d'amphibole. Les CPX sont disparates par endroits, laissant apparaitre la norite. Les plagioclases subautomorphes, interstitiels aux pyroxènes, forment 30 à 40 % du gabbro-norite et de la norite. La proportion de plagioclase varie et peut atteindre 80 à 90 % de la roche pour former l'anorthosite. La phlogopite de plus en plus présente est automorphe (Fig. 3e). On peut noter la présence de rares cristaux de quartz.

La présence systématique d'amphibole est remarquable dans toutes les lithologies de l'intrusion de même que les minéraux

Figure 3 : Microphotographies de différentes séquences de l'intrusion de Samapleu. a. Lherzolite serpentinisée avec spinelle et sulfure interstitiel; b. Chromitite avec chromite interstitielle formant un réseau en filet autour des pyroxènes ; c. Webstérite à olivine avec olivine cumulus et orthopyroxène postcumulus ; d. Webstérite avec pyroxènes à kinks de déformation et extinction onduleuse; e. Gabbro-norite avec phlogopite sub-automorphe; f. Faciès hybride avec saphirine et hercynite.

Oliv = olivine ; Opx = orthopyroxène ; Cpx = clinopyroxène ; PX = Pyroxène ; Serp = serpentine ; Plag = plagioclase ; Amph = amphibole ; Herc = hercynite ; Phl = Phlogopite ; Sap = saphirine ; Cord = cordiérite; Sulf = sulfure ; Spin = spinelle CHR = chromite ; Grt = grenat.

S12

S2A

S18

S01

SM

SM

SM

SM

Anorthosite

52

S12-206

S2A-79

S18-90

S01-45

+

+

 $^+$

+

+

Lithologies	Zones	Forages	Échantillons	Chr	Oliv	Serp	OPX	CPX	Amph	Plagio	Spin	Mag	Phl	Qtz	Op
Unité															
ultramafique															
Chromitite	SM	S12	S12-63	+				+	+			+			+
	SM	S06	S06-59	+	+		+	+				+			+
	SM	S06	S06-32	+	+		+	+	+			+			
	5IVI E1	S12 SM24 661614	S12-70 SM24 273 8	+	+		+	+ +	+	+	+	Ŧ	+		Ŧ
	E1 F1	SM24-661614	SM24-275,6	+	+		+	+	+	т	+	+	T		+
Webstérite à		314124 001014	SIN124 102									+			
chromite	SM	SM44-505224	SM445/39,9	+	+		+	+	+		+				+
	SM	SM44-505224	SM445/42,4	+	+		+	+	+		+	+	+		+
Webstérite à	F1	SM24-661614	SM24-271				+	+	+	+	+	+			
spinelle	LI	51124-001014	51124-271				1		I						
	El	SM24-628651	SM24(b)/197,3				+	+	+		+	+			
Dunite	SM	<u>S06</u>	<u>S06-74</u>		+	+					+				
Lherzolite	EI E1	SM24-661614	SM24-182		+	+	+	+	+		+	+			
	EI	SIV124-001014 S M A A	511/24-85		+	+	+	+	+		+	+			
	SM	450250(b)	SM44b-27,8		+	+	+	+	+		+	1			
	SM	SM44-450250a	SM44a-38 8		+	+	+	+	+		+	+			+
	SM	S06	S06-135		+		+	+			+				+
	SM	S06	S06-83		+		+	+			+	+			
Harzburgite	SM	T2/2	T2/2-27		+		+				+				
-	SM	S06	S06-116		+		+		+		+	+			
	SM	S12	S12-64		+		+		+		+				+
	SM	S16	S16-30		+		+		+		+				+
	SM E1	SM44-680289	<u>SM44 (3)/110</u> SM24 217 5		+	+	+		+		+	+	+		+
websterite a onvine	EI E1	SIV124-001014 SM24 661614	SIM24-217,5 SM24-118-4		+		+	+	+		+	+			
	F1	SM24-661614	SM24-118,4 SM24-67.8		+		+	+	+		+	1			
	L1	S M 4 4 -	51412+ 07,0												
	SM	450250(b)	SM44b-20,5		+	+	+	+	+		+				
	SM	SM44-517178	SM44-517/72		+	+	+	+	+		+	+			
	SM	SM44-680289	SM44 (3)/115		+	+	+	+	+		+	+	+		+
	SM	S06	S06-154		+		+	+			+				+
	SM	S12	S12-102b		+		+	+			+				
Webstérite	E1	SM24-661614	SM24-156				+	+	+		+				
	El El	SM24-661614	SM24-97				+	+	+						+
	EI	SM24-661614	SM24-67,4		+		+	+	+						+
	SM	5 M 4 4 - 450250(b)	SM44b-44,10				+	+	+		+				
	SM	450250(0) SM44-450250a	SM44a-91-3				+	+	+	+					
	SM	S2A	S2A-2				+	+	+						+
	SM	SM44-517178	SM44-517/179				+	+	+						
	SM	SM44-525290	SM44-525/83				+	+	+		+		+		
	SM	S41	S41-76				+	+	+		+				+
Orthopyroxénite	SM	S06	S06-42		+		+	+	+		+				+
Webstérite à	E1	SM24-661614	SM24-266				+	+	+	+			+		
plagioclase	21		51112 - 200												
	SM	S M 4 4 -	SM44b-47,3				+	+	+	+					+
		450250(b)	,												
	SM	5 M 4 4 - 450250(h)	SM44b-74,6				+	+	+	+	+				
		430230(0)													
	SM	450250(b)	SM44b-95,9				+	+	+	+			+	+	+
	SM	SM44-517178	SM44-517/65				+	+	+	+					
	SM	SM44-525290	SM44-525/119				+	+	+	+			+		+
	SM	S3A	S3A-40				+	+	+	+					+
	SM	S12	S12-60				+	+	+	+	+				+
Unité mafique															
Gabbro-norite	E1	SM24-661614	SM24-251				+	+	+	+					
	E1	SM24-480735	SM24-480/352				+	+	+	+					+
	SM	SM44-	SM44b-1178				+	+	+	+			+		+
	5111	450250(b)	5141440-117,0						1						1
	SM	S M 4 4 -	SM44b-130.1				+	+	+	+					
	5141	450250(b)	511110 150,1												
	SM	SM44-	SM44c- 122				+	+	+	+					+
	~~···	450250(c)	0144												
	SM	SM44-450250a	SM44a-103				+	+	+	+			+	+	+
	SM	512 524	S12-62 S2A 122				+	+	+	+					
Norite	SM	S2A \$12	S2A-133 \$12,117				+	+	+	+					
INDITIC	- DIVI	114	014-11/				—		T	T					-

Fableau I	: Para	igenèses	minérales	des	lithologies	du c	lyke	de	Sama	oleu

SM = Zone Principale ; E1 = Extension 1 ; Chr = chromite ; Oliv = olivine ; Serp = serpentine ; Opx = orthopyroxène ; Cpx = clinopyroxène ; Amph = amphibole ; Plag = plagioclase ; Spin = spinelle ; Mag = Magnétite ; Phl = Phlogopite ; Qtz = Quartz ; Op = Minéraux Opaque.

+

opaques constitués essentiellement de sulfure.

Les minéraux comme l'olivine, les pyroxènes et les plagioclases des deux occurrences (E1 et SM) présentent des caractéristiques métamorphiques, notamment des contours rectilignes avec joints triples d'environ 120° par endroits, des kinks de déformation et des extinctions onduleuses. En outre, un faciès hybride (aux contacts intrusion-granulite) présente une paragenèse à orthopyroxène-saphirine-cordiérite-spinelle-sillimanite (Fig. 3f).

4.2. Cristallochimie des minéraux du dyke de Samapleu

Les minéraux observés dans les lithologies de l'intrusion ont été caractérisés par leur chimie. Les principaux minéraux étudiés dans les zones E1 et SM sont l'olivine, l'orthopyroxène, le clinopyroxène, le plagioclase, la serpentine, l'amphibole et les spinelles.

Olivine

Dans le dyke de Samapleu, les cristaux d'olivine sont fortement magnésiens (le nombre Mg - Mg# fluctue entre 0,76 et 0,90). Les espèces d'olivine de la zone E1 ont des teneurs en forstérite (Fo) de 80 à 88 % et celles de la zone SM de 76 à 90 %. Ce sont donc des chrysolites (Roubault et al., 1963). Ceux contenus dans la chromitite sont les plus magnésiens avec des teneurs situées entre Fo₈₇ et Fo₈₈ à l'Extension 1 et entre Fo₇₈ et F₉₀ dans la zone SM (Tab. II). Les teneurs en NiO sont inférieures ou égales à 0,35 % dans l'intrusion de Samapleu et les teneurs cationiques en Ni sont inférieures à 2800 ppm (Tab. II), donc nettement inférieures à 3500 ppm (teneur normale de Ni cation dans une olivine mantellique).

Pyroxènes

Orthopyroxènes

Les cristaux des orthopyroxènes du dyke de Samapleu sont magnésiens et correspondent à la bronzite et à l'hypersthène (Fig. 4a). Les signatures des OPX sont sensiblement les mêmes dans les deux zones (E1 et SM). Cela veut dire que le Mg# des cristaux des OPX varie entre 0,72 et 0,92 et que les OPX les plus magnésiens sont dans la chromitite ; les teneurs en Al₂O₃ sont élevées et fluctuent entre 1 et 4 % ; le contenu en molécule de Ca-Tschermark's élevé varie entre 1 et 7 % et les teneurs sont toujours faibles en Cr₂O₃ (<0,6 %) et TiO₂ (<0,2 % ; Tab. III et IV).

Clinopyroxènes

Les espèces de CPX de l'intrusion de Samapleu sont fortement magnésiennes (Mg# supérieurs à 0,85), particulièrement au sein de la chromitite et des péridotites. Le diagramme de Morimoto (1989) indique que les CPX de Samapleu sont majoritairement formés de diopside et accessoirement d'augite à l'Extension 1 avec un enrichissement modéré en fer (2 à 6 % ; Fig. 4a). Les signatures des CPX sont sensiblement les mêmes dans les deux zones (E1 et SM), avec des teneurs en Al₂O₃ relativement élevées (1 à 8 %), des valeurs en Cr₂O₃ (< 0,9 %), Na₂O (< 0,76 %) et TiO₂ (< 0,7 %) relativement faibles dans l'ensemble, un pourcentage en molécules de Ca-Tschermark's très élevé avec une large variabilité atteignant 9 % dans la zone principale et 13 % dans l'Extension 1 (Tab. V et VI).

Le diagramme binaire Al⁴ en fonction d'Al⁶ situe les CPX de l'intrusion de Samapleu dans le champ des minéraux de roches

ignées, métamorphisées dans le faciès granulite (réf. Fig. 6c).

Figure 4 : Caractérisation des minéraux des lithologies de l'intrusion de Samapleu. **a.** Diagramme de Morimoto (1989) pour les orthopyroxènes et clinopyroxènes ;

- 1 = Diopside ; 2 = Hédenbergite ; 3 = Augite ; 4 = Pigeonite ; 5 = Enstatite ; 6 = Bronzite ;
- 7 = Hypersthène ; 8 = Eulite ; 9 = Ferrosilite.

b. Diagramme de Deer et al. (1983) pour les plagioclases ; 1 = Anorthite ; 2 = Bytownite ; 3 = Labrador ; 4 = Andésine; 5 = Oligoclase ; 6 = Albite ; 7 = Anorthoclase ; 8 = Sanidine, Orthoclase, Microcline.

c. Diagramme de Seyler (2007) pour les amphiboles

Plagioclase

Les plagioclases du dyke de Samapleu sont composés de plusieurs espèces (An_{38} à An_{94} Tab. VII). Dans la zone SM, les espèces de plagioclase sont l'anorthite et la bytownite dans la webstérite à plagioclase et la norite; l'anorthite, la bytownite et le labrador dans le gabbro-norite et l'andésine dans l'anorthosite (Fig. 4b).

Dans la zone E1, les espèces de plagioclase sont composées d'anorthite dans la webstérite à plagioclase et de bytownite dans le gabbro-norite (Fig. 4b). Les teneurs en anorthite varient peu au sein d'une même séquence. La teneur en Fk (orthoclase) est faible quelque que soit la lithologie (Tab. VII).

• Amphibole

Les espèces d'amphibole de l'intrusion de Samapleu sont magnésiennes (Mg# > 0,70), majoritairement alumineuses (Al₂O₂ autour de 13%) et calciques (CaO 12% en moyenne) avec des teneurs en Na₂O (Na₂O \leq 3 %), Cr₂O₃ (Cr₂O₃ \leq 2 %) et TiO₂ $(TiO_2 < 2\%)$ relativement faibles. Ces amphiboles appartiennent au groupe des amphiboles calciques car dans le site B elles ont dans leur organisation structurale (Mg, Fe²⁺, Mn²⁺, Li) \leq 0.50, $(Ca, Na) \ge 1.00$ et Na < 0.50) (Leake et al., 2004). Les variations chimiques observées sont attribuées à une combinaison de substitution de tschermackite, de pargasite et d'hornblende. Les amphiboles se répartissent en deux groupes : celles très peu siliceuses (Si < 6.5) sont constituées de tschermackite et de pargasite, celles à Si > 6,5 forment des hornblendes (Fig. 4c; Tab. VIII et IX). Dans le diagramme Na (M4) en fonction de Al⁶ +Ti+Fe³⁺, ces amphiboles tombent dans le champ des minéraux formés à moyenne-haute pression (Fig. 6d).

Cito	Evtoncio	2												Zono pri														
Roche	Websté	ite à oliv	vine			Lherzoli	te				Chromi	tite		Chromit	ite	Dunite		Lherzoli	te			Harzbur	gite				Pyro à o	livine
Echantillons	SM1- 67,8	SM24 - 1 - 118,4	SM1-21	7,5		SM24 -1	1-83	SM1-18	32		SM24-1	1-102		S06-31	S06-59	S06-74		S06-83		S06-13	5	T2/2-27			S06- 135	S12-64	S 0 - 1 5 4	S12- 102b
Analyses	73	386	46	53	58	429	432	1	13	19	479	482	484	32	24	58	59	64	65	92	93	58	71	80	71	108	105	122
SiO ₂ (%)	39,86	39,83	38,57	38,15	38,27	40,00	39,98	37,96	38,70	38,50	40,03	41,07	39,71	41,71	39,29	39,66	39,95	39,54	39,69	38,73	38,99	40,15	40,43	40,46	40,09	40,21	37,20	40,68
TiO2	0,02	0,05	0,03	0,01	0,02	0,02	0,02	ı	0,01	0,03	ı	0,03	ı	ı	ı	ı	·	0,02	ı	0,02	ı	ı	ı		ı	ı	ı	'
Al ₂ O ₃	'	·	0,01	0,01	'	0,05	'	'	'	,	·	0,05	0,08	'	'	'	'	,	'	ı	·	0,01	·	'	0,02	0,01	0,06	0,01
Cr ₂ O ₃	0,02		0,04	0,02		1			1			1		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Mno	0.34	0.23	10,27	0.19	0.19	0.31	10,17 0.22	0.30	0.33	0.30	0.15	0.18	0.18	<i>9,10</i>	0.24	0.19	0.21	0.36	0.29	0.43	0.19	0.10	0.35	0.24	0.18	0.24	0.45	0.20
MgO	44,50	40,61	42,69	42,93	43,04	44,63	44,53	43,67	43,20	43,55	47,61	47,56	47,86	48,40	40,51	38,86	40,13	39,39	40,15	42,23	42,01	44,13	43,94	42,15	42,48	44,47	41,18	44,45
CaO	0,03	0,04	0,01	ı	0,02	ı	ı	0,01	0,01	0,01	ı	ı	0,02	ı	ı	ı	ı	ı	0,02	ī	0,02	ı	ı	ı	ı	0,03	0,04	ı
Na ₂ O	0,03	0,11	0,02	0,04	0,01	0,08	0,01	0,04	0,02	ı	0,02	ı	ı	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
K ₂ O	, 1	0,15	0,01	0,01	, , ,	0,01	0,01	0,02	0,01	0,01	. '	0,01	0,01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	. nd	nd	nd
NiO	0,14	nd	0,19	0,25	0,28	nd	nd	0,33	0,30	0,30	nd	nd	nd	0,29	0,35	0,16	0,27	0,27	0,30	0,17	0,13	0,24	0,19	0,19	0,26	nd	0,29	nd
Total	100,99	99,25	100,10	99,66	99,81	101,23	100,94	99,74	100,35	100,09	99,89	101,21	100,26	100,30	100,90	100,20	101,00	100,40	102,00	98,80	99,10	102,60	102,80	100,10	100,40	101,90	97,26	101,80
Ni cation (ppm)	1106	nd	1476	2000	2179	nd	nd	2565	2394	2343	nd	nd	nd	2278	2750	1257	2121	2121	2357	1335	1021	1885	1493	1493	2043	nd	2278	nd
Si	1,00	1,02	0,99	0,98	0,98	1,00	1,00	0,97	0,98	0,98	0,99	1,00	0,98	1,02	1,00	1,02	1,02	1,02	1,01	1,00	1,00	0,99	1,00	1,02	1,01	1,00	0,98	1,01
≥⊐	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
ç	·		ı	ı	ı	ı	ı	·	ı	·	·	ı	ı	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fe	0,34	0,39	0,39	0,39	0,39	0,34	0,34	0,37	0,38	0,37	0,25	0,25	0,26	0,20	0,44	0,46	0,44	0,45	0,46	0,37	0,38	0,37	0,37	0,36	0,37	0,35	0,40	0,34
Š	0,01	; '	0,01	2 2 2	2) '	0,01	, , ,	0,01	0,01	0,01) 1 '	, , ,	;	, 1 , 7	0,01	, ,	0,01	0,01	0,01	0,01	, ,		0,01	0,01	, ,	0,01	0,01	, '
Ca	т, рр	1,55 -	1,63 -	1,64 -	1,64 -	1,66	1,66	т,ь/ -	1,64 -	- -	т,/р -	1,/3 -	1,//	1,/b -	1,54 -	1,49 -	- -	1,51 -	- 1,52	1,62 -	т,ът	1,63 -	1,62 -	- -	т, вО	1,65 -	1,62 -	1,64 -
Na	ı	0,01	ı	ı	ı	ī	ı	ı	ı	ı	ı	ı	ı	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
×	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
N	·	nd	·	0,01	0,01	nd	nd	0,01	0,01	0,01	nd	nd	nd	0,01	0,01	,	0,01	0,01	0,01	ı	·	·	·	,	0,01	nd	0,01	nd
Total	3,00	2,98	3,01	3,02	3,02	3,00	3,00	3,03	3,02	3,02	3,01	3,00	3,02	2,98	3,00	2,98	2,98	2,99	2,99	3,00	3,00	3,01	3,00	2,98	2,99	3,00	3,02	2,99
Forstérite	83,17	79,87	80,63	80,92	81,01	83,14	83,07	81,71	81,24	81,70	87,53	87,32	87,30	89,84	77,84	76,43	77,73	77,06	76,77	81,33	80,85	81,34	81,36	81,51	81,29	82,29	80,28	82,74
Fayalite	16,83	20,13	19,37	19,08	18,99	16,86	16,93	18,29	18,76	18,30	12,47	12,68	12,70	10,16	22,16	23,57	22,27	22,94	23,23	18,67	19,15	18,66	18,64	18,49	18,71	17,71	19,72	17,26
#Mg	0,83	0,80	0,81	0,81	0,81	0,83	0,83	0,82	0,81	0,82	0,88	0,87	0,87	0,90	0,78	0,76	0,78	0,77	0,77	0,81	0,81	0,81	0,81	0,82	0,81	0,82	0,80	0,83

*Note : (1) nombre d'Oxygène = 4O ; (2) nd = non déterminé ; (3) - : limite de détection

54

Science de la vie, de la terre et agronomie

I I	
Netrit Netri Netri Netri	
Interview Interview	
Interview Concretine Concretine Notaria Solution Solution <th c<="" td=""></th>	
University University <th colspa="16" td="" univer<=""></th>	
Intervite Concentional Variable Variable <th c<="" td=""></th>	
SM1-182 Subsepandantial Duration Subsepandantial Subsepandatial Subsepandatia Subsepand	
Committe	
Zeneprindale Structure Conunite Danie Harzine Structure <	
Chronitie Constitue Dunite Unrestitue Constitue Number of the state Num	
20000 principule Vertication of the colspan="2">Vertication of the colspan="2" Vertication	
Introplate Dunite Herzolte Sof-37 S	
Dunte theraolite Harzburgte Harzburgte Farzburgte Sof-33 Sof-31 Sof-33 Sof-33 Sof-33 Sof-31 Sof-33 Sof-31 Sof-33 Sof-33 Sof-31	
Intervalue Harzburgte Spess <	
Ite view Harzburgite Sp6-135 T/2-27 S $1 = 5 + 1 = $	
Harzburgite Pyro à olivine S06-135 T2/2.27 S 0.6 - S12.64 S 0.6 - S12.64 S 0.6 - S12.64 S 0.7 - S 1 2 92 93 58 71 80 71 13 5 S 12 1 5 4 10 2 92 93 58 71 80 71 108 105 122 92 93 58 71 80 71 108 105 122 92 93 58 71 80 71 108 102 37,20 40,68 002 - - - 0.02 0.01 nd	
Harzburgite Pyro \dot{a} olivine So \dot{a} <th co<="" td=""></th>	
Harzburgite Pyro à olivine T2/2-277 S 0 6 - S 12-64 S 0 - S 1 2 S 0	
Bite Pyro \hat{a} olivine r S 0 6 - 1 3 5 S 12-64 1 3 5 S 0 - 1 5 4 S 1 0 2 71 80 71 108 105 122 40,43 40,46 40,09 40,21 37,20 40,68 - - 0,02 0,01 0,06 0,01 nd nd nd nd nd nd nd 135 42,15 42,48 44,47 41,18 44,45 0,19 0,19 0,26 nd nd nd nd nd nd nd nd nd 1493 1493 2043 nd nd nd 1,00 1,02 1,01 1,00 0,98 1,01 1,62 1,59 1,60 1,65 1,52 1,54 1,62 1,59 1,60 1,65 1,62 1,64 1,62 1,59 1,60 1,65 1,62 1,64 </td	
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	
S 0 6 - S 12-64 S 0 - S 1 1 3 5 1 5 4 1 0 2 71 108 105 122 71 108 105 122 40,09 40,21 37,20 40,68 - - - - 0,02 0,01 0,06 0,01 17,41 17,03 18,04 16,53 0,18 0,24 0,45 0,20 42,48 44,47 41,18 44,45 - 0,03 0,04 - nd nd nd nd nd 0,42 0,45 101,80 101,80 2043 nd 101,90 97,26 101,80 1,01 1,00 0,98 1,01 - - - - - - nd nd nd nd nd 0,37 0,35 0,40 0,34 0,52 - -	
Pyro à olivine - \$12-64 \$ 0 - \$ 1 2 108 105 122 40,21 37,20 40,68 - 0,01 0,06 0,01 17,02 18,04 16,53 0,02 0,03 0,04 nd nd nd nd 0,28 1,01 - - - nd nd nd nd 0,21 0,34 0,03 0,44 - nd nd nd 0,01 - - - - - nd nd nd 0,01 0,01 - - - - nd nd nd nd 0,01 <td< td=""></td<>	
Pyro à olivine 1 5 0 - 5 1 2 105 122 37,20 40,68 - 0,06 0,01 nd nd 16,53 0,20 41,18 44,45 0,04 - nd nd 0,29 nd 10,8 1,01 - - - nd nd 0,30 0,34 0,01 - 1,62 1,64 - nd nd 0,01 - 1,62 2,99 80,28 82,74 19,72 17,26	
à olivine 1 0 2 122 122 0,01 nd 16,53 0,20 44,45 101,80 101,80 101,80 nd 101,80 1,01 1,01 1,01 1,64 10,24 1,02 0,20 44,45 1,02 0,20 44,45 1,02 0,20 44,45 1,02	

Science de la vie, de la terre et agronomie

REV. RAMRES - VOL.06 NUM.01. 2018 ** ISSN 2424-7235

Matrial Matrial <t< th=""><th>Site</th><th>Zone pr</th><th>incipale</th><th>line</th><th></th><th></th><th></th><th></th><th>Iherzolit</th><th>Ď</th><th></th><th>Harzhurgi</th><th>†D</th><th></th><th>Wahctári</th><th>te à nlagio</th><th>n 200</th><th>Chromitit</th><th>D</th><th></th><th></th><th>Wehctér</th><th>τ^b</th><th></th><th>Gabbro-porito</th><th>Norite</th><th></th></t<>	Site	Zone pr	incipale	line					Iherzolit	Ď		Harzhurgi	†D		Wahctári	te à nlagio	n 200	Chromitit	D			Wehctér	τ ^b		Gabbro-porito	Norite	
Mont B G	Echantillons	S06-15	4	S06-42			S12-102b	Ū	So6- 135	S06-83		T2/2-27			S2A-2			S06-31			SO6-59	S41-76		S12-61	S12-62	S2A-133	S 1 2 1 0 2
	Analyses	86	99	42	50	119	120	119	84	63	69	61	62	78	20	21	25	ω	4	л	19	104	108	97	106	153	115
	SiO ₂ (%)	52,06	51,40	55,54	56,25	55,83	52,97	55,83	54,62	55,42	55,42	55,23	55,30	54,91	53,16	53,31	53,88	57,71	57,49	57,03	56,58	54,21	55,02	54,40	54,35	54,89	55,54
No. Mo. Mo. <td>TiO₂</td> <td>0,06</td> <td>0,09</td> <td>0,03</td> <td>0,01</td> <td>0,07</td> <td>0,23</td> <td>0,07</td> <td>0,06</td> <td>0,07</td> <td>'</td> <td>·</td> <td>0,03</td> <td>0,08</td> <td>0,20</td> <td>'</td> <td>0,03</td> <td>0,08</td> <td>0,06</td> <td>0,06</td> <td>0,09</td> <td>0,07</td> <td>0,04</td> <td>0,04</td> <td>ı</td> <td>0,06</td> <td>0,10</td>	TiO ₂	0,06	0,09	0,03	0,01	0,07	0,23	0,07	0,06	0,07	'	·	0,03	0,08	0,20	'	0,03	0,08	0,06	0,06	0,09	0,07	0,04	0,04	ı	0,06	0,10
No. 110 <td>Al₂O₃</td> <td>3,93</td> <td>3,65</td> <td>2,21</td> <td>2,18</td> <td>3,27</td> <td>3,22</td> <td>3,27</td> <td>3,46</td> <td>1,99</td> <td>1,91</td> <td>3,40</td> <td>3,72</td> <td>3,87</td> <td>4,15</td> <td>3,33</td> <td>3,04</td> <td>1,45</td> <td>1,20</td> <td>1,54</td> <td>1,44</td> <td>3,35</td> <td>2,66</td> <td>3,53</td> <td>3,44</td> <td>1,67</td> <td>1,98</td>	Al ₂ O ₃	3,93	3,65	2,21	2,18	3,27	3,22	3,27	3,46	1,99	1,91	3,40	3,72	3,87	4,15	3,33	3,04	1,45	1,20	1,54	1,44	3,35	2,66	3,53	3,44	1,67	1,98
No. Obs Dist D	FeOt	11,69	12,09	11,82	11,55	11,63	3,51	11,63	11,46	12,70	13,14	12,02	11,73	12,00	17,27	17,24	17,28	6,76	6,88	7,11	11,93	11,47	11,73	13,20	14,75	15,48	15,33
O O D	Fe ₂ O ₃	0,93	2,10	,	,	0,86	0,60	0,86	,	,	0,03	2,33	1,33	0,62	0,60	,	,	ı	,	ï	,	2,20	2,23	0,01	1,53	1,98	0,45
000 0.15 0.15 0.11 0.13 0.15 0.11 0.13 0.14 0.15 0.14 0.15 0.14 0.15	FeO	10,85	10,20	11,82	11,55	10,86	2,97	10,86	11,46	12,70	13,11	9,92	10,53	11,44	16,73	17,24	17,28	6,76	6,88	7,11	11,93	9,49	9,72	13,19	13,37	13,60	14,93
Mon A.3 D.3 D.3 <thd.3< th=""> <thd.3< th=""> <thd.3< th=""></thd.3<></thd.3<></thd.3<>	Cr ₂ O ₃	,	0,05	0,17	0,20	0,14	0,24	0,14	,	0,15	0,10	0,07	0,03	0,11	0,15	0,19	0,15	0,22	0,16	0,26	0,15	0,13	0,09	0,64	0,23	0,16	0,29
Mode Mode <th< td=""><td>MnO</td><td>0,29</td><td>0,34</td><td>0,26</td><td>0,29</td><td>0,21</td><td>0,09</td><td>0,21</td><td>0,23</td><td>0,24</td><td>0,35</td><td>0,29</td><td>0,19</td><td>0,31</td><td>0,32</td><td>0,34</td><td>0,32</td><td>0,23</td><td>0,17</td><td>0,22</td><td>0,21</td><td>0,26</td><td>0,46</td><td>0,28</td><td>0,17</td><td>0,31</td><td>0,27</td></th<>	MnO	0,29	0,34	0,26	0,29	0,21	0,09	0,21	0,23	0,24	0,35	0,29	0,19	0,31	0,32	0,34	0,32	0,23	0,17	0,22	0,21	0,26	0,46	0,28	0,17	0,31	0,27
O O	MgO	28,39	28,26	29,52	29,61	31,04	16,63	31,04	28,97	28,53	29,24	30,74	30,75	φ	25,81	25,33	25,61	33,68	34,41	33,76	30,19	29,42	30,89	28,65	28,56	28,82	28,47
Mal Solution	CaO	0,43	0,35	0,45	0,41	0,33	23,69	0,33	0,56	0,44	0,53	0,37	0,48	0,39	0,44	0,41	0,53	0,38	0,19	0,36	0,50	2,03	0,42	0,42	0,42	0,32	0,37
Q I	Na ₂ O	,	0,04	0,07	ı	ı	0,09	,	,	0,02	,	0,01	,	ı	0,02	,	,	0,01	0,03	ı	0,03	ı	0,01	·	ı	,	0,01
Not S	K ₂ 0	,	ı	,	ı	ı	,	ı	·	ı	ı	ı	ı	ı	0,01	ı	ı	0,01	ı	ı	ı	0,03	ı	ı	ı		0,01
India 96,5 96,7 100,7 100,5 1	NiO										•	0,18				0,04											
110 110 <td>Total</td> <td>96,85</td> <td>96,27</td> <td>100,07</td> <td>100,50</td> <td>102,52</td> <td>100,67</td> <td>102,52</td> <td>99,36</td> <td>99,56</td> <td>100,69</td> <td>102,31</td> <td>102,23</td> <td>101,67</td> <td>101,50</td> <td>100,10</td> <td>100,80</td> <td>100,50</td> <td>100,50</td> <td>100,30</td> <td>101,10</td> <td>100,90</td> <td>101,30</td> <td>101,10</td> <td>101,92</td> <td>101,70</td> <td>102,30</td>	Total	96,85	96,27	100,07	100,50	102,52	100,67	102,52	99,36	99,56	100,69	102,31	102,23	101,67	101,50	100,10	100,80	100,50	100,50	100,30	101,10	100,90	101,30	101,10	101,92	101,70	102,30
Art 011 011 004 013 008 008 008 008 008 009 010 007 007 007 007 008 02 008 008 008 008 008 008 008 008	Si	1,90	1,89	1,96	1,97	1,92	1,92	1,92	1,94	1,97	1,96	1,90	1,91	1,91	1,90	1,93	1,94	1,98	1,97	1,97	1,98	1,90	1,91	1,92	1,91	1,94	1,95
n+ 007 0.05 0.	Al ⁴	0,10	0,11	0,04	0,03	0,08	0,08	0,08	0,06	0,03	0,04	0,10	0,09	0,09	0,10	0,07	0,06	0,02	0,03	0,03	0,02	0,10	0,09	0,08	0,09	0,06	0,05
Perior 0.33 0.34 0.32 0.32 0.01 0.01 <	Al ₆	0,07	0,05	0,05	0,06	0,05	0,05	0,05	0,08	0,06	0,04	0,04	0,06	0,07	0,07	0,07	0,07	0,04	0,02	0,03	0,04	0,04	0,02	0,06	0,05	,	0,03
Per- 0.3 0.3 0.34 0	Fe ³⁺	0,03	0,06			0,02	0,02	0,02				0,06	0,03	0,02	0,02		1	1		,	,	0,06	0,06		0,04	0,05	0,01
Gr - - 0.01 - 0.01 - - - 0.01 - 0.01 - 0.01 0.0	Fe ²⁺	0,33	0,31	0,35	0,34	0,31	0,09	0,31	0,34	0,38	0,39	0,29	0,30	0,33	0,50	0,52	0,52	0,19	0,20	0,21	0,35	0,28	0,28	0,39	0,39	0,40	0,44
MM Lub Lub <thlub< th=""> Lub <thlub< th=""> <thlub< th=""> <thlub< th=""></thlub<></thlub<></thlub<></thlub<>	ç Ç	י ר ר ר	, , ,	י ר י ד	0,01	, i 2	0,01	י ד ס	י ד כ	, r	, r	, , , ,	י ר ס	י ר י ר	1 1 7	0,01	, 1 7	0,01	, i ,	0,01] ,	, L	, ,	0,02	0,01	, r	0,01
Int Or	Mn	1,00	1,55 0 01	0 01	1,00	1,33	, , , , , , , , , , , , , , , , , , ,	1,33	1, 33	1,31	1, 04	1,30	1,00	1,00	1,37	1,37 0 01	1,3/	1,72	т, / U	1,74 0 01	1, J/	1, 34	1,00	1, 30	1,49 0.01	1,31	1,43 0 01
GA O.D2 O.D1 O.D1 O.D1 O.D1 O.D1 O.D1 O.D1 O.D1 O.D2 O.D1 O	=						0,01								0,01					-							
NA - - 0,01 - - 0,01 -<	Ca	0,02	0,01	0,02	0,02	0,01	0,92	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,02	0,08	0,02	0,02	0,02	0,01	0,01
K -	Na	'	'		'		0,01			'	'														I		
NI -	~		,																								
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Z					ı																					
Meff0.820.830.820.840.910.840.820.800.850.840.820.730.790.730.900.900.800.820.850.850.790.717.137.148.	Total	4,00	4,00	3,99	3,98	4,00	4,00	4,00	3,99	3,98	4,00	4,00	4,00	4,00	4,00	4,00	3,99	3,99	4,00	4,00	3,99	4,00	4,00	4,00	4,00	4,00	4,00
	Mg#	0.82	0.83	0.82	0.82	0.84	0.91	0.84	0.82	0.80	0.80	0.85	0.84	0.82	0.73	0.72	0.73	0.90	0.90	0.89	0.82	0.85	0.85	0.79	0.79	0.79	0.77
Fet+Mn*18,9719,6618,5118,1817,525,6617,5218,2620,1120,3518,2217,7018,5727,8027,8310,3610,2810,7918,2317,5717,9820,7122,4823,2623,35Ca %0,870,710,880,810,6347,720,631,120,831,020,700,910,750,880,831,060,720,3510,2810,7918,2317,5711,9820,7122,4823,2623,35En %76,1578,3476,6076,5878,9347,7778,9374,7574,9576,4180,6678,8176,3767,2866,8567,3985,8487,4386,4478,3179,3182,2274,1075,1978,19F %16,7716,4017,5917,5046,3715,8016,9319,8016,9319,4115,0315,4216,7924,9426,0325,9910,0010,0510,5317,5714,5520,0021,1822,31Mo %1,2316,7716,9325,9310,0010,0510,5317,5714,5720,0021,1822,31Lo %<	Mg %	80,15	79,64	80,61	81,01	81,85	46,61	81,85	80,62	79,01	78,62	81,08	81,39	80,67	71,70	71,37	71,40	88,92	89,37	88,53	80,81	78,54	81,22	78,46	76,71	76,13	75,94
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Fe t + Mn %	18,97	19,66	18,51	18,18	17,52	5,66	17,52	18,26	20,11	20,35	18,22	17,70	18,57	27,42	27,80	27,53	10,36	10,28	10,79	18,23	17,57	17,98	20,71	22,48	23,26	23,35
En% 76.15 78.34 76.60 76.58 78.93 45.27 78.93 74.75 74.95 76.41 80.66 78.81 76.37 67.28 66.85 67.39 85.84 87.43 86.44 78.31 79.31 82.22 74.10 75.19 78.19 74.17 F8% 16,77 16,40 17,59 17,18 15,80 46,72 15,80 16,93 19,04 15,03 15,42 16,79 24,94 26,03 25,99 10,00 10,05 10,53 17,67 14,75 15,21 19,55 20,00 21,18 22,31 W0% -	Ca %	0,87	0,71	0,88	0,81	0,63	47,72	0,63	1,12	0,88	1,02	0,70	0,91	0,75	0,88	0,83	1,06	0,72	0,35	0,68	0,96	3,89	0,79	0,83	0,81	0,61	0,71
$F_5\%$ $16,77$ $16,40$ $17,59$ $17,18$ $15,80$ $46,7$ $15,80$ $16,93$ $19,08$ $19,74$ $15,03$ $15,92$ $26,03$ $25,99$ $10,00$ $10,55$ $10,53$ $17,67$ $14,75$ $15,21$ $19,55$ $20,00$ $21,18$ $22,31$ $W0\%$ $43,27$ $43,27$	En %	76,15	78,34	76,60	76,58	78,93	45,27	78,93	74,75	74,95	76,41	80,66	78,81	76,37	67,28	66,85	67,39	85,84	87,43	86,44	78,31	79,31	82,22	74,10	75,19	78,19	74,47
	Fs %	16,77	16,40	17,59	17,18	15,80	4,67	15,80	16,93	19,08	19,74	15,03	15,42	16,79	24,94	26,03	25,99	10,00	10,05	10,53	17,67	14,75	15,21	19,55	20,00	21,18	22,31
Ac% - 0,14 - <td>Wo %</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td></td> <td>43,27</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td>'</td> <td>,</td> <td>,</td> <td>'</td> <td>,</td> <td>,</td> <td>'</td> <td>'</td> <td></td> <td>1,92</td> <td>,</td> <td></td> <td></td> <td></td> <td>,</td>	Wo %	,	,	,	,		43,27	,	,	,	,	,	'	,	,	'	,	,	'	'		1,92	,				,
Id% - 0,14 - <td>Ac %</td> <td>,</td> <td>,</td> <td></td> <td>,</td> <td>ı</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>ī</td> <td>,</td> <td>ī</td> <td>,</td> <td>,</td> <td></td> <td>ŀ</td> <td>1</td> <td>ī</td> <td>ŀ</td> <td>ī</td> <td>ŀ</td> <td>,</td> <td></td> <td>,</td> <td>ī</td>	Ac %	,	,		,	ı	,					ī	,	ī	,	,		ŀ	1	ī	ŀ	ī	ŀ	,		,	ī
Ca-Tsch 6.91 4,73 5,26 6,21 5,10 5,52 5,10 8,17 5,65 3,77 4,23 5,70 6,64 7,12 7,12 6,55 3,89 2,16 2,87 3,58 3,83 2,39 6,22 4,80 0,47 2,89 Tr-Tsch 0,16 0,25 0,08 0,03 0,18 0,63 0,18 0,16 0,19 0,08 0,21 0,53 - 0,08 0,21 0,15 0,16 0,24 0,19 0,11 0,10 - 0,16 0,26 Es %	Jd %	,	0,14	·	,	ı	,	,	,	,	,	ı	,	ı	,	,	,	ı	·	ı	ı	ı	ı	ı	ı	,	ı
Tr-fsch% 0,16 0,25 0,08 0,03 0,18 0,63 0,18 0,16 0,19 0,08 0,21 0,53 - 0,08 0,21 0,15 0,16 0,24 0,19 0,11 0,10 - 0,16 0,26 Es%	Ca-Tsch %	6,91	4,73	5,26	6,21	5,10	5,52	5,10	8,17	5,65	3,77	4,23	5,70	6,64	7,12	7,12	6,55	3,89	2,16	2,87	3,58	3,83	2,39	6,22	4,80	0,47	2,89
15% 0,03 0,03 0,03 0,03 0,03 0,07	Ti-Tsch %	0,16	0,25	0,08	0,03	0,18	0,63	0,18	0,16	0,19	'	,	0,08	0,21	0,53	,	0,08	0,21	0,15	0,16	0,24	0,19	0,11	0,10	ı	0,16	0,26
	Es %	,	י ג ר	, v	,	,		,	,	, , ,	0,08	· 0	,	ı	2 1	,	,	, 1	· ·	ı	· ·	ı	, o	0,03		,	2 ' 2 '
	NO /8		U, 1 J	0,47			0,04			0,14		0,07			U,14			0,07	0,20		0,20		0,07			,	0,07

*Note : (1) nombre d'Oxygène = 6 O ; (2) ; nd = non déterminé ; (3) - : limite de détection

56

Tableau IV: Analyses représentatives des orthopyroxènes de la zone principale

	S	ci	en	CE	e d	e	la	vi	ie,	de	la	te	rre et	t a	gr	'0 1	10	m	ie							RI	E V. 1	RAN	I R	ES	- 1
*Note · /1	Ko%	Es %	Ti-Tsch %	Ca-Tsch %	Jd %	Ac %	Wo %	Fs %	En %	Ca %	Fet + Mn %	Mg %	Mg #	Total	N	×	Na	Ca	Ţ	Mn	Mg	Cr	Fe ²⁺	Fe ³⁺	Al ⁶	Al ⁴	Si	Total	NiO	K,0	O ^R N
1 nomb	1,07	ı	0,58	4,49	0,70	·	39,31	3,45	50,42	43,58	3,90	52,52	0,94	4,00	ı	ı	0,02	0,84	0,01		1,01	0,01	0,07	0,01	0,05	0,06	1,94	99,36	nd	0,01	0.25

*Note : (1	Ko%	Es %	Ti-Tsch %	Ca-Tsch %	Jd %	Ac %	Wo %	Fs %	En %	Ca %	ret + Min %	Mg %		Mg #	Total	Z.	~	Na	Ca	Ţ	Mn	Mg	Cr	Fe ²⁺	Fe ³⁺	Al ⁶	Al ⁴	Si	Total	NiO	K20	Na ₂ O	CaO	MgO	MnO	Cr ₂ O ₃	FeO	Fe ₂ O ₃	FeOt	Al ₂ O ₃	SiO ₂ (%) TiO ₂
) nomł	1,07		0,58	4,49	0,70	ı	39,31	3,45	50,42	43,58	3,90	52,52	0,01	0.94	4,00	ı	ı	0,02	0,84	0,01		1,01	0,01	0,07	0,01	0,05	0,06	1,94	99,36	nd	0,01	0,25	21,45	18,58	0,06	0,37	2,20	0,22	2,40	2,72	53,29 0,21
ore d'C	1,27		0,53	7,61	0,68	ı	22,43	3,91	63,57	28,20	4, IO	67,64	0,01	0.94	3,94	ı	·	0,01	0,51	,		1,22	0,01	0,07	ı	0,08		2,02	97,94	nd	0,02	0,27	13,29	22,91	0,05	0,43	2,46	·	2,46	1,89	56,43 0,19
)xygèn	0,73	,	1,19	1,84	2,34	,	47,78	1,40	44,72	48,78	16,0	44,25	0,01	76.0	4,00			0,03	0,93	0,01		0,85	0,01	0,02	0,11	0,04	0,15	1,85	100,20	nd	0,03	0,41	23,82	15,53	0,06	0,24	0,81	3,88	4,30	4,34	50,67 0,41
e = 6 C	0,53		1,75	1,82	ı	ı	48,57	1,22	46,11	49,19	o,/o	45,04	0,00	86.0	4,00	ı	·	0,01	0,96	0,02		0,88	0,01	0,02	0,09	0,02	0,14	1,86	99,09	nd	ı	0,07	24,25	15,96	0,08	0,31	0,67	3,21	3,56	3,69	50,25 0,60
; (2) ;	0,44		1,95	3,62	0,06	ı	46,53	3,19	44,20	50,13	4,94	44,93	0,01	0 94	4,00	ī		0,01	0,97	0,02		0,87	·	0,06	0,03	0,04	0,11	1,89	100,14	nd	0,01	0,07	24,81	15,98	0,10	0,15	1,95	1,19	3,03	3,37	51,80 0,70
nd = n	0,73		1,67	1,55	0,39	ı	48,24	2,56	44,88	49,19	0,02	44,29	0,00	0 95	4,00	ī		0,01	0,96	0,02		0,86	0,01	0,05	0,08	0,02	0,12	1,88	99,94	nd	0,05	0,15	24,34	15,75	0,11	0,24	1,49	2,81	4,02	3,26	51,16 0,58
on dét	0,48	'	1,28	2,29	0,03	,	48,41	2,52	45,00	49,73	5,09	44,58	0,00	0.95	4,00	ı	,	0,01	0,97	0,01		0,87	0,01	0,04	0,06	0,02	0,11	1,89	100,24	nd	0,01	0,07	24,83	16,00	0,13	0,16	1,46	2,28	3,51	2,99	51,86 0,45
erminé	0,80		0,11	2,32	0,99	ı	43,36	5,80	46,61	44,90	٥,1b	46,94	0,00	68 0	4,00	ı		0,02	0,87		0,01	0,91	0,01	0,11	0,05	0,03	0,07	1,93	98,65	0,02	ı	0,24	21,93	16,48	0,20	0,27	3,46	1,61	4,91	2,32	52,10 0,04
; (3) - :	0,58	,	0,20	2,65	0,86	,	46,74	4,81	44,16	49,20	5,09	45,11	0,04	0.91	4,00			0,01	0,96		0,01	0,88	0,01	0,09	0,02	0,04	0,04	1,96	100,70	0,01	ı	0,20	24,58	16,20	0,23	0,20	2,92	0,55	3,41	1,86	53,89 0,07
: limite	1,08	,	1,12	3,59	0,39	,	46,31	2,57	44,94	48,25	/, ТЭ	44,56	0,00	0.95	4,00			0,01	0,93	0,01		0,86	0,01	0,05	0,09	0,04	0,15	1,85	100,91	nd	0,02	0,20	23,88	15,85	0,08	0,36	1,54	3,27	4,48	4,30	51,02 0,39
de dét	0,83	,	1,10	3,87	1,65	,	45,30	3,55	43,69	48,63	т 6,0	44,46	0,00	£6 U	4,00			0,02	0,93	0,01		0,85	0,01	0,07	0,06	0,05	0,12	1,88	. 100,60	nd	0,01	0,34	23,74	15,60	0,13	0,28	2,13	2,29	4,19	4,09	51,60 0,39
ection	0,74		0,67	3,71	0,42	ı	46,39	3,03	45,04	48,78	5,99	45,23	0,04	0 94	4,00	ı		0,01	0,94	0,01		0,87	0,01	0,06	0,06	0,04	0,11	1,89) 101,2(nd	0,02	0,16	24,37	16,24	0,13	0,25	1,82	2,09	3,70	3,40	52,46 0,24
	0,82		1,37	4,89	2,20		42,88	3,86	43,98	47,78	0,00	45,6	0,04	CP ()	4,00			0,03	0,90	0,01		0,86	0,01	0,07	0,05	0,07	0,12	1,88	0 100,7	nd	0,04	0,42	23,10	15,87	0,05	0,28	2,43	1,75	4,01	4,43	51,86 0,49
	0,49		0,64	4,12	5,02	ı	3 46,9	6,61	3 36,1	3 51,5	a'nT	7 37,8	0,00	0 82	4,00	ı		0,05	0,95	0,01		0,70	0,01	0,12	0,07	0,09	0,12	1,88	3 98,53	nd	0,01	0,73) 23,60	7 12,4	0,14	0,16	3,92	2,42	6,10	4,62	5 50,13 0,22
	0,60		0,66	1,52	5,29	ı	5 50,37	3,56	7 37,99	7 52,07	2 9,49	L 38,44	0,75	0.97	4,00	ı	ı	0,06	0,97	0,01	0,01	0,72	0,01	0,06	0,11	0,06	0,14	1,86	3 97,79	nd	0,01	0,76	5 24,03	12,75	0,15	0,19	1,98	3,87	5,46	4,54	3 49,29 0,22
	0,49		0,56	4,77	4,18	ı	46,77	6,57	36,67	51,71	9,93	38,36	0,00	0 85	4,00	ī	·	0,05	0,96	0,01		0,71	0,01	0,12	0,06	0,09	0,11	1,89	97,91	nd	0,01	0,62	23,74	12,66	0,12	0,16	3,92	2,00	5,72	4,49	50,00 0,19
	0,47	,	0,42	2,13	3,84	,	48,15	5,94	39,05	49,88	1U, / 1	39,41	0,07	0.87	4,00			0,04	0,94	,		0,75		0,11	0,09	0,06	0,11	1,89	97,50	nd	0,02	0,56	23,21	13,18	0,17	0,15	3,40	3,12	6,21	3,82	49,73 0,14
	0,18	,	1,01	5,90	0,04		44,38	4,98	43,52	48,80	פ, ש	44,41	0,00	0 9 0	4,00				0,94	0,01		0,86		0,10	0,03	0,06	0,11	1,89	100,20	nd	0,02	0,03	24,02	15,71	0,10	0,06	3,10	1,20	4,18	3,94	51,67 0,36
	0,15		0,88	4,22	0,73		46,20	4,81	43,02	48,85	cn's	43,10	0,00	06.0	4,00			0,01	0,94	0,01		0,83		0,09	0,06	0,05	0,12	1,88	100,63	nd	0,03	0,12	24,11	15,29	0,12	0,05	2,92	2,27	4,97	3,82	51,58 0,31
	1,26		0,83	4,57	1,17	ı	46,07	3,49	42,62	49,30	7,07	43,08	0,00	£6 U	4,00	ı		0,02	0,94	0,01		0,82	0,01	0,06	0,08	0,06	0,14	1,86	100,90	nd	0,02	0,33	24,04	15,10	0,11	0,42	2,10	2,84	4,65	4,52	51,14 0,29
	0,93		0,97	4,04	0,91		46,51	3,90	42,73	49,33	1,01	43,00	0,01	0 97	4,00			0,02	0,94	0,01		0,82	0,01	0,07	0,07	0,05	0,13	1,87	100,39	nd	0,01	0,25	24,10	15,10	0,08	0,31	2,38	2,60	4,72	4,10	51,12 0,34
	2,56	,	1,32	12,34	3,73	,	27,01	6,09	46,94	38,42	8,30	53,29	0,00	68.0	4,00			0,06	0,67	0,01		0,93	0,03	0,12	0,02	0,16	0,17	1,83	9 100,3	0,05	ı	0,89	17,31	17,26	0,12	0,89	3,87	88,0	4,67	7,73	50,84 0,48
	2,58		1,28	12,2	3,90	ı	. 26,9:	6,01	47,10	38,2	8, ZO	53,5	0,00	0 80	4,00			0,06	0,66	0,01		0,93	0,03	0,12	0,03	0,16	0,17	1,83	0 100,2	0,04	ı	0,92	. 17,2:	17,3	0,12	0,89	3,82	0,91	4,64	7,73	1 50,8 0,47
	2,56	,	1,28	1 11,7	3,80		1 27,7	5,42) 47,4.	4 38,4	δ, Ι(1 53,3	0,00	0.90	4,00			0,0€	0,67	0,01		0,93	0,03	0,10	0,04	0,15	0,17	1,83	2 100,1	0,05	ı	0,89	1 17,3	1 17,3	0,12	38,0	3,41	1,33	4,60	7,67	5 50,6 0,46
	5 2,6		3 1,3	1 11,3) 3,9	ı	4 27,;	2 5,1	8 47,8	8 38,1	ο σ,1	6 53,6	0,0	0.9) 4,0	1		5 0,0	7 0,6	1 0,0		3 0,9	3 0,0) 0,1	0,0	5 0,1	7 0,1.	1,8	10 100,	5 0,0	ı	9,0,9,	7 17,2	1 17,4	? 0,1.	3 0,9	1 3,2	3 1,5) 4,6	7 7,7	0 50,5 ; 0,4;
	<u>6 1,75</u>		2 0,30	9 7,4C	2 2,34		⁷ 0 42,8	5 4,76	17 40,5	.6 49,4	9 /,JC	4 42,9	+ 0,01	1 0.90	0 4,00			6 0,04	7 0,91	-		4 0,75	3 0,02	20,0	4 0,05	5 0,10	8 0,12	2 1,88	10 99,5.	5 0,01	1	2 0,56	4 23,1	12 14,4	3 0,13	1 0,59	1 2,89	5 1,68	1 4,40	0 5,05	56 50,9 3 0,10

VOL.06 NUM.01. 2018 ** ISSN 2424-7235

Tableau V: Analyses représentatives des clinopyroxènes de la zone Extension 1

Site Roches

Extension 1 Chromitite SM24-1-102 477 478

Analyses Echantillons

SM24-1-83 413 4 Lherzolite

423

428

433

436

98

64

403

407

408

SM24-1-251 225 236 Gabbro-norite

236

237

239

319

359

361

Ν

58

59

51

SM24-1-97

SM24-1-156

SM24-271 н

Webstérite 298

SM1-67,8 Webstérite à olivine

SM24-1-118,4 402

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Si 1,86 1,91 1,96 Al ⁴ 0,14 0,09 0,04	SiO ₂ (%) 48,63 52,91 54,1 TiO ₂ 0,36 0,32 0,11 Al ₂ O ₃ 3,81 3,22 2,44 FeOt 4,03 3,51 3,92 FeO 1,15 2,97 3,99 Cr ₂ O ₃ 0,01 0,24 0,11 MnO 0,20 0,09 0,07 MnO 14,81 16,63 16,0 CaO 23,74 23,69 23,3 Na ₂ O 0,07 0,09 0,33 K ₂ O NiO	Sites Zone principale Roches Webstérite à olivine Lherzo Echantillons S06-154 S 1 2 S06-83 Analyses 95 120 66
2 0,04 7 0,86 7 0,86 9 0,01 1 0,96 2 0,01 2 0,01 2 0,01 - - - - - - - - - - - - - - - - - - -	2 0,04 7 0,86 7 0,86 0,01 1 0,96 2 0,01 2 0,01 4,00	0,11 0,11	50,45 50,45 51 51 51 51 51 51 51 51 51 5	olite 3 S06-135 87
0,04 0,09 0,09 0,01 0,01 0,01 0,01 0,94 0,91 0,0 0,90 0,90 0,90 0,90 0,90 0,90	0,04 0,09 0,84 0,84 0,84 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,0 4,00 4,00 4,00	1,88 1,8 0,12 0,1 0,06 0,0	52,39 52,8 0,31 0,2 4,24 3,6 4,33 4,5 1,43 2,0 3,04 2,7 0,12 0,1 15,59 16,3 15,59 16,3 24,52 24,3 0,12 0,1 0,12 0,1 0,12 0,1 101,78 102,2	Harzburgite T2/2-27 63 64
00 0,90 11 0,01 13 0,93 11 - 14 0,01 10 - 10 - 10 - 10 4,01 10 4,01 10 4,01 10 4,01 10 5,79 10 5,7	00 11 0,001 11 0,001 11 0,001 11 0,001 11 0,001 11 0,001 11 0,001 11 0,001	1,90 1,90 1,90 1,90 1,10 1,90 1,10 1,90 1,10 1,90 1,9	87 52,77 51 3,67 51 3,67 51 3,55 50 0,02 78 3,53 20 16,70 27 24,11 22 - 24 101,40	
0,01 0,03 0,01 0,03 0,01 - 4,00 4,00 0,91 0,87 0,91 0,87 0,91 0,87 44,71 43,29 6,64 8,84 48,65 47,86	0,93 0,01 0,03 - - 0,01 - - 0,01 - 4,00 4,00	1,90 1,90 0,10 0,10 0,07 0,07 0,04 0,05 0,09 0,12 - 0,01 - 0,85 0,82 	52,97 51,10 0,22 0,08 3,91 3,93 4,09 5,32 1,30 1,67 2,92 3,82 0,03 0,31 0,03 0,031 0,13 0,03 15,94 14,79 15,94 14,79 15,94 14,79 15,94 14,79 15,94 14,79 15,94 0,38 0,01 0,38 0,01 0,01 0,03 0,38 0,01 0,01 0,03 0,03 0,01 0,03 0,03	Webstéri 9 La g i c 52A-2 77 26
- 4,00 0,86 43,25 8,51 48,23	- 4,00	1,90 0,11 0,13 0,03 0,03 0,03 0,03 0,04	52,52 0,36 4,74 4,19 4,19 0,92 0,92 0,92 0,92 0,50 14,54 22,56 0,61 -	e à) <u>c l a s e</u> S12-61 98
48,09	0,95 45,94 5,97	1,90 0,10 0,03 0,05 0,05 0,90 0,90 0,91 0,91 0,91 0,91	52,46 0,22 2,94 3,78 2,51 1,52 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,0	Webstérit S41-76 109
AA 71 A	0,90 (45,66 4 6,68 6 47,66 4	1,91 0,09 0,05 0,01 0,01 0,01 0,88 0,01 0,01 0,01 0,01	52,61 5 0,23 0 3,39 2 4,17 4 1,09 1 3,19 3 0,19 0 0,19 0 0,19 0 0,10 1 223,67 2 0,10 0 223,67 2 0,10 0 1,00,70 10	e 110
5,60 42, 5,00 7,5 4.50 39,7),90 0,8 6,20 45,; 5,57 8,0 7,20 46,6	1,92 1,5 5,03 - 1,5 5,04 0,0 5,01 0,00 5,01 0,00 5,01 0,00 5,01 0,00 5,01 0,00 5,01 0,00 5,01 0,000 0,000000000000000000000000000	2,90 53,),19 0,0 2,63 3,6 1,12 4,7 1,12 4,7 1,12 4,7 1,12 4,7 1,12 0,3 1,12 0,3 1,12 0,3 1,12 0,3 1,12 0,3 1,12 0,3 1,12 0,3 1,12 0,5 1,12 0,5 1,1	Gab S12-
33 41,2(;3 6,72	35 0,86 28 43,78 36 7,80 67 48,42	93 1,91 1,	07 52,7 18 0,29 19 4,11 14 4,75 14 4,34 19 0,025 19 0,025 15 15,20 15 15,20 15 23,39 15,20	bro-norite 62 4 103
5 40,43	0,85 3 43,48 7,53 48,99	3,99 3,99	51,35 0,59 4,16 4,47 4,47 0,42 0,03 114,58 0,34 - - - - - - - - - - - - - - - - - - -	Norite S2A-133 156
42,99 6,20 43,97	0,88 45,02 6,55 48,43	1,94 0,06 0,12 0,12 0,86 0,91 0,92 0,92 -	54,04 0,38 2,35 0,04 0,04 0,16 0,16 0,16 0,16 0,13 23,99 0,33 - - -	S12-102 116
44,97 4,43	0,91 47,27 4,66 48,07	1,96 0,04 0,05 0,01 0,90 0,91 0,91 0,91 0,91 0,91 0,91	53,63 0,23 2,18 2,73 2,73 2,73 0,48 0,16 16,46 16,46 16,46 23,29 0,34 99,52	Chromitit S06-31
45,39 3,85 43,41	0,92 47,61 4,04 48,35	1,95 0,05 0,01 0,01 0,01 0,01 0,01 0,02 -	53,59 0,31 2,45 2,42 - 2,42 0,33 0,33 0,16 0,28 0,28 0,01 -	۵ ۵

*Note : (1) nombre d'Oxygène = 6 O ; (2) ; nd = non déterminé ; (3) - : limite de détection

• Serpentine

Les espèces de serpentine de Samapleu ont un Mg# variant entre 0,867 et 0,987. La plupart des cristaux de serpentine analysés sont magnésiens mais d'autres le sont moins avec des valeurs en FeO total atteignant parfois 9 % (Tab. VII). Les spectres obtenus à la spectrométrie Raman sur des échantillons de serpentine provenant de la lherzolite des zones E1 et SM indiquent exclusivement la lizardite. Ce dernier est reconnaissable notamment sur les hautes fréquences par les deux raies caractéristiques à 3684 cm⁻¹ et 3705 cm⁻¹ qui correspondent aux liaisons OH, ce qui est confirmée par les raies de basses fréquences (Fig. 5).

Figure 5 : Microphotographie et spectre Raman obtenus d'une lherzolite partiellement serpentinisée prélevée à l'Extension 1 de Samapleu.

 a. Microphotographie en lumière polarisé de l'échantillon SM24-661614/83 avec indication de la zone d'analyse (point rouge)

; **b**. Spectre Raman pour les hautes fréquences de la serpentine de Samapleu ; **c**. Spectre Raman pour les basses fréquences de la serpentine de Samapleu.

Figure 5 : Microphotographie et spectre Raman obtenus d'une lherzolite partiellement serpentinisée prélevée à l'Extension 1 de Samapleu. **a.** Microphotographie en lumière polarisé de l'échantillon SM24-661614/83 avec indication de la zone d'analyse (point rouge) ; **b.** Spectre Raman pour les hautes fréquences de la serpentine de Samapleu ; **c.** Spectre Raman pour les basses fréquences de la serpentine de Samapleu.

Spinelles

Les spinelles de l'intrusion de Samapleu (E1, SM) se répartissent en trois grands groupes de spinelles (spinelle alumineux, spinelle chromifère et spinelle ferrifère) impliquant une large variation du Mg# (Tab. X et XI). Suivant la classification de Deer et al. (1992), ces spinelles sont composés majoritairement de spinelle (ss), de chromite, de magnétite, d'hercynite. En faible proportion on trouve la magnesio-chromite, la magnesioferrite et accessoirement la gahnite (inférieur à 2 %). La teneur en Cr_2O_3 dans les chromitites varie de 20 à 39 % et celle en titane (TiO₂) est inférieure à 2,40 %.

Selon les diagrammes triangulaires de Suita et Strieder (1996), les spinelles des zones E1 et SM sont rigoureusement alignés sur la ligne marqueuse du métamorphisme de haut grade (faciès amphibolite supérieur à granulite) à l'exception de la chromitite de la zone SM (Fig. 6a). Dans ce même diagramme, pour Barnes et Roeder (2001), les spinelles des zones SM et E1 correspondraient à des spinelles provenant d'une intrusion de type stratiforme et métamorphisée dans un faciès de haute grade (Fig. 6b).

Figure 6 : Diagrammes de caractérisation des conditions de formation des minéraux de l'intrusion de Samapleu. **a.** Spinelles dans le diagramme Al³⁺ - Cr³⁺ - Fe³⁺ de Suita et Strieder (1996) ; ⁺; **b.** Spinelles dans le diagramme Al³⁺ - Cr³⁺ - Fe³⁺ de Barnes et Roeder (2001); **c.** CPX dans le diagramme Al⁶ - Al⁴ de Aoki et Kushiro (1968)

d. Amphiboles dans le diagramme Na (M4) versus Al⁶ + Ti + Fe³⁺ de Zhao et Zhou (2006).

Plagioclase Site	Extensi	on 1		Gabbro		Zone pri	ncipale			Norite			Gabbro-r	orito			Aporthos	to.			Site	ne Extensior	n 1 te à clivin	Đ		I horzolito			
Echantillons	SM-24-	1-266		SM - 24-1-		S2A-2	S3A-40			S12-62	S2A-	S 1 2 -	S12-60			S 1 2 -	S2A-79	S18-90	S01-45		Ech	SM1-67,8		SM24-1-1	18,4	SM2	- 83	SM1-	182
Analyses	263	268	281	227	235	24	33	43	48	105	151	117	119	127	141	124	133	131	137	138	Anal	56	59	411	420	444	449	2	25
SiO ₂ (%)	44,09	43,92	44,33	46,48	45,88	44,48	46,11	46,37	44,88	45,49	45,82	47,48	49,33	46,75	53,42	46,95	59,49	59,17	57,35	57,82	SiO2	41,77	42,89	39,71	41,80	36,93	43,65	40,46	40,52
TiO ₂	,	,	0,02	0,03	0,02	,	,	ı	,	,	,		,	,	ı	,	,	,	,	ŗ	TiO ₂	,	0,02	0,03	·	0,19	0,02	0,04	0,03
Al ₂ O ₃	35,29	35,75	35,91	33,35	33,24	35,77	36,01	35,17	35,89	37,31	35,01	36,82	33,10	34,93	30,62	36,67	26,53	28,21	29,62	29,08	Al ₂ O ₃	,	0,01	0,05	ı	1,20	·		
Cr ₂ O ₃	0,01	,	,	,	,	,			1	,	,	,	,	,	,	ı	,	,	,	ı	Cr ₂ O ₃	,	,	0,01	,	0,13	0,03	0,02	,
Fe ₂ O ₃	0,32	0,21	0,06	,	,	0,23	0,11	0,08	0,50	,	0,03	0,01	0,58	0,61	0,04	0,06		0,06	0,01	0,20	FeOt	2,07	4,28	9,26	2,01	9,59	1,01	2,18	3,41
MnO		0,02	0,01	0,01			'		'	'			'		,		,				MnO		0,05	0,12		0,11	0,02	0,06	0,10
MgO	0,32	0,01	,	0,02	,	,	ı	ı	,	,	,		,	,	ı	,	,	,	,	ı	MgO	41,38	38,85	38,38	42,17	35,02	42,66	40,91	39,91
CaO	18,75	19,43	19,36	17,70	17,88	18,59	18,94	18,05	18,86	18,09	17,68	18,13	15,34	17,05	12,53	17,59	7,72	8,43	9,62	9,35	CaO	0,01	0,04	0,03	0,01	0,20		0,05	0,03
Na ₂ O	0,92	0,67	0,83	2,06	1,69	0,75	0,98	1,28	0,62	0,74	1,06	1,37	2,78	1,68	4,32	1,46	5,78	6,41	5,64	5,75	Na2O	0,02	0,02	0,05	ı	0,02	0,04	0,04	,
K20	0,03	0,03	0,01	0,03	0,03	0,01	0,01	ı	ı	0,03		0,01	0,06		0,12	ı	1,68	0,21	0,18	0,31	K20	0,01	0,02	0,02	0,01	0,02	0,01	0,03	0,01
ZnO	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	ZnO		0,03	nd	nd	nd	nd	0,06	ŀ
NiO	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	NiO	0,12	0,04	nd	nd	nd	nd	0,29	0,23
Total	99,70	100,00	100,50	99,70	98,80	99,80	102,20	101,00	100,80	101,70	99,60	103,80	101,20	101,00	101,10	102,70	101,20	102,50	102,40	102,50	Total	85,38	86,24	87,68	86,00	83,41	87,45	84,14	84,23
Si	2,05	2,03	2,04	2,15	2,14	2,06	2,08	2,11	2,06	2,06	2,11	2,10	2,23	2,13	2,39	2,10	2,63	2,58	2,51	2,53	Si	1,99	2,04	1,92	1,97	1,89	2,01	1,96	1,97
Ħ	ī	ı	ī				ı	ı	ı	,			,		ı	ı	,	ı	ı	ı	⊒	ı		ı	ı	0,01	ı		
AI	1,93	1,95	1,95	1,82	1,83	1,95	1,92	1,89	1,94	1,99	1,90	1,92	1,76	1,87	1,62	1,93	1,38	1,45	1,53	1,50	Þ	,	,	,	,	0,07	,	,	
Cr	,		,			,	ŀ			,		,	,	'	·		,				ç		,			0,01			
Fe ³⁺	0,01	0,01	,	,		0,01	,	·	0,02	,		,	0,02	0,02	,	,	,	,	,	0,01	Fe	0,08	0,17	0,38	0,08	0,41	0,04	0,09	0,14
Mn	,	,	,	,	,	,	,		,	,	,	,	,	,	,	,	,	,	,	,	Mn	,	,	0,01		0,01		,	,
Mg	0,02	,	,	,		,	,	·	,	,		,	,	,	·	,	,	,	,	,	Mg	2,94	2,75	2,77	2,97	2,67	2,93	2,96	2,90
Ca	0,93	0,96	0,96	0,88	0,89	0,92	0,92	0,88	0,93	0,88	0,87	0,86	0,74	0,83	0,60	0,84	0,37	0,39	0,45	0,44	Ca	,	,	,		0,01		,	,
Na	0,08	0,06	0,07	0,19	0,15	0,07	0,09	0,11	0,06	0,06	0,09	0,12	0,24	0,15	0,37	0,13	0,50	0,54	0,48	0,49	Na	,		0,01	·	'	,	,	
~	,		,	,		,	ŀ			,		,	,	'	0,01		0,09	0,01	0,01	0,02	~		,						
Zn	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	Zn	ı	,	nd	nd	nd	nd	'	
Z	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	Z		,	nd	nd	nd	nd	0,01	0,01
Total	5,03	5,02	5,02	5,03	5,02	5,00	5,00	5,00	5,00	4,98	4,98	5,00	5,01	5,01	4,99	5,00	4,97	4,97	4,97	4,98	Total	5,01	4,97	5,08	5,03	5,07	4,99	5,04	5,03
An	91,70	94,00	92,70	82,50	85,20	93,10	91,40	88,60	94,40	92,90	90,20	87,90	75,00	84,90	61,10	86,90	38,30	41,60	48,00	46,50	Mg#	0,97	0,94	0,88	0,97	0,87	0,99	0,97	0,95
Ab	8,10	5,90	7,20	17,40	14,60	6,80	8,60	11,40	5,60	6,90	9,80	12,00	24,60	15,10	38,20	13,10	51,80	57,20	50,90	51,70									
Ksp	0,20	0,20	0,10	0,20	0,20	0,10	0,10		•	0,20		0,10	0,30		0,70		9,90	1,20	1,10	1,80									

*Note : (1) nombre d'Oxygène = 8 O pour les plagioclases et la serpentine ; (2) - : limite de détection

60

Tableau VII: Analyses représentatives des plagioclases et de la serpentine des zones Extension 1 et Principale

*Note	Mg#	Total	~	Site A Na	Total	Na	Ca	Mn	Fe ²⁺	Mg	Site B	Total	Mg	Mn	Fe ²⁺	Fe ³⁺	ç	П	Al ₆	Site C	Total	Fe ³⁺	Al ⁴	Si	Site T	Total	K20	Na ₂ O	CaO	MgO	MnO	FeOt	Fe_2O_3	FeO	Cr ₂ O ₃	Al_2O_3		SiO2	Analys	Echant	Roches	Site
e: (1)																																							SG	illons		
nombre	0,88	0,83	0,13	0,69	2,00		1,99		,	0,01		5,00	3,55	0,01	0,49	0,32	0,11	0,12	0,40		8,00		1,90	6,10		95,71	0,72	2,43	12,65	16,30	0,11	6,58	2,87	4,00	0,93	13,28	1,05	41,60	ω	SM1-182	Lherzolite	Extension 1
d'Oxy	0,86	0,84	0,13	0,70	2,00)) '	1,98	1	ı	0,02		5,00	3,58	0,01	0,59	0,17	0,11	0,11	0,42		8,00	ı	1,80	6,20		96,77	0,73	2,50	12,70	16,65	0,08	6,30	1,57	4,89	0,97	12,96	1,02	42,73	12			
gène =	0,89	0,80	0,13	0,67	2,00)) '	1,99			0,01		5,00	3,61	0,01	0,44	0,34	0,11	0,13	0,36		8,00		1,89	6,11		95,50	0,72	2,35	12,60	16,50	0,09	6,33	3,06	3,58	0,95	13,00	1,16	41,60	34			
= 32 (0,84	0,85	0,13	0,71	2,00)) '	1,95			0,05		5,00	3,51	0,01	0,68	0,16	0,11	0,13	0,42		8,00		1,81	6,19		96,56	0,72	2,52) 12,47	16,35	0,08	6,83	1,41	5,56	0,93) 12,95	1,15) 42,42	22			
);(2)	0,84	0,73	0,08	0,65	2,00	, , '	1,91	,		0,09		5,00	3,41	0,01	0,66	0,18	0,05	0,11	0,58		8,00		1,77	6,23		97,00	0,42	2,33	12,40	16,30	0,05	6,99	1,69	5,47	0,41	13,90	1,04	43,30	404	SM-2	Webs	
nd =	0,85	0,69	0,09	0,59	2,00	, , '	1,69	,		0,31		5,00	3,45	0,01	0,65	0,20	0,06	0,11	0,52		8,00		1,69	6,31		95,61	0,50	2,10	10,85	17,30	0,10	6,99	1,84	5,33	0,50) 12,89	1,00) 43,38	409	4-1-118,	térite à c	
non de	0,83	0,75	0,06	0,69	2,00)) '	1,92		ı	0,08		5,00	3,41	0,01	0,74	0,11	0,03	0,10	0,60		8,00		1,68	6,32		. 97,29	0,32	2,47	12,49	16,28	0,08	7,07	1,04	6,13	0,27	13,47	0,88	43,96	415	44	olivine	
étermi	0,87	0,78	0,11	0,67	2,00)) '	1,94		ı	0,06		5,00	3,53	0,01	0,53	0,25	0,08	0,05	0,56		8,00		1,77	6,23		97,70	0,63	2,41	12,70	16,82	0,07	6,48	2,31	4,40	0,73	13,82	0,44	43,58	77	SM1-(
iné ; (0,87	0,77	0,11	0,66	2,00	, , '	1,94	ı		0,06		5,00	3,56	0,02	0,56	0,24	0,07	0,04	0,53		8,00		1,69	6,31		96,37	0,59	2,35	12,52	16,71	0,14	6,53	2,16	4,58	0,61	12,98	0,36	43,54	78	67,8		
3) - : [0,88	0,77	0,08	0,68	2,00)) '	1,99		ı	0,01		5,00	3,50	0,01	0,49	0,37	0,05	0,07	0,50		8,00		1,86	6,14		95,46	0,44	2,41	12,66	16,07	0,10	7,01	3,38	3,97	0,47	13,64	0,67	41,92	50	SM1-2		
imite	0,88	0,77	0,08	0,70	2,00	, '	1,96		ı	0,04		5,00	3,48	0,01	0,49	0,47	0,06	0,07	0,43		8,00		1,89	6,11		95,50	0,42	2,45	12,50	16,10	0,06	7,78	4,24	3,97	0,50	13,50	0,60	41,60	52	217,5		
de dét	0,83	0,74	0,08	0,66	2,00	, '	1,93	1		0,07		5,00	3,40	0,01	0,71	0,15	0,09	0,09	0,55		8,00		1,71	6,29		96,60	0,44	2,33	12,40	16,00	0,10	7,08	1,34	5,88	0,82	13,20	0,83	43,40	350	SM-24	Webst	
ection	0,84	0,66	0,08	0,58	2,00		1,94			0,06		5,00	3,37	0,01	0,63	0,20	0,10	0,09	0,59		8,00		1,74	6,26		97,0	0,44	2,07	12,5	15,9	0,08	6,94	1,87	5,26	0,89	13,7	0,86	43,4	351	-1-156	érite	
_	0,87	0,56	\$ 0,06	0,50	2,00	, , ,	1,93	1		0,07		5,00	3,44	. 0,01	0,51	0,35	0,08	0,07	0,54		8,00		1,67	6,33		3 95,9	· 0,30	1,78	6 12,4	8 16,2	30,08	1 7,12	, 3,20	i 4,24	0,66	3 12,9	0,64	8 43,7	85	SM1		
	7 0,90	5 0,54	5 0,06	0 0,48	2,00	, , , '	3 1,86	1		7 0,14		5,00	1 3,32	1 0,01	1 0,39	5 0,93	3 0,10	7 0,07	1 0,17		8,00		7 1,89	3 6,11		8 96,2	0 0,30	3 1,70	4 11,9	5 15,9	3 0,11	2 10,8) 8,46	1 3,19	5 0,89	7 11,9	1 0,66	1 41,9	93	-186		
	0,94	1 0,14	0,01	0,13	2,00	, , ,	1,92	1		30,0		5,00	: 4,3C	. 0,01	0,25	0,29	0,02	, 0,01	, 0,12) 8,00		0,55	. 7,45		9 95,5	0,06	0,46	2 12,6	3 20,7	. 0,08	1 4,58	2,33	2,48	0,22	9 3,98	30,0	8 52,6	80			
	0,91	1 0,21		0,21	2,00	, , ,	1,85	1		0,15		5,00) 4,20	. 0,01	0,03	0,45	0,05	. 0,01	0,24		8,00		0,56	7,44		4 96,8		0,78	4 12,3	6 20,9	30,08	4,13	0,27	3,88	0,49	4,84	\$ 0,07	7 53,2	ω	SM2		
	. 0,92	. 0,20		. 0,20	2,00	, , ,	1,90	1		0,10		5,00) 4,18	. 0,01	30,08	0,40	0,08	. 0,01	↓ 0,2 [∠]		8,00		0,63	1 7,37		0 96,6		3 0,7 <u>5</u>	0 12,6	0 20,5	\$ 0,07	4,09	, 0,75	3,38	0,71	¹ 5,2	0,12	0 52,5	6	4-271		
	0,91) 0,21) 0,21	2,00	, , ,) 1,82	,		0,18		5,00	\$ 4,17	. 0,01	0,04	0,45	\$ 0,07	. 0,01	0,24		8,00		0,59	7,41		0 96,8		0,76	0 12,1;	0 20,90	, 0,09	4,19) 0,41	3,82	. 0,68	5,03	0,06	0 53,03	21			
	0,86	0,69		0,69	2,00)) '	1,87	ı	ı	0,13		5,00	3,31	0,01	. 0,58	0,24	0,14	0,06	. 0,66		8,00		1,86	6,14		5 95,73	ı	2,45	2 12,03) 15,8:	0,07	6,77	2,23	4,77	1,21	14,70	0,55	2 42,14	40			
	0,89	0,56		0,56	2,00	, , '	1,88	1		0,12		5,00	3,35	0,01	0,44	0,34	0,11	0,06	0,68		8,00		1,83	6,17		3 96,00		2,02	1 12,18	l 16,11	0,08	6,52	3,17	3,67	0,98) 14,75	0,58	1 42,78	10			
	0,71	0,73	0,10	0,63	2,07	, , ,	2,07					4,93	2,95	0,01	1,18	0,04	0,02	0,08	0,64		8,00		1,60	6,40		93,79	0,51	2,13	3 12,7;	13,03	0,06	9,64	0,38	9,29	0,20	12,52	0,70	3 42,23	223	SM-2	Gabb	
	0,73	0,74	0,09	0,64	2,02	, , ,	2,02					4,98	2,99	0,01	1,12	0,04	0,02	0,07	0,72		8,00		1,67	6,33		95,75	0,50	2,24	12,70	3 13,55	0,07	9,39	0,35	9,07	0,21	2 13,69	0,66	3 42,74	233	4-1-251	ro-norite	
	0,71	0,82	0,10	0,72	2,06	, '	2,06	1				4,94	2,92	0,02	1,20	,	0,03	0,08	0,69		8,00		1,63	6,37		5 94,09	0,50	2,45) 12,69	5 12,91	0,14	9,44	,	9,44	0,26	9 13,01	0,69	1 42,00	241			
	0,71	0,68	0,10	0,59	2,04	, , '	2,04	,				4,96	2,83	0,02	1,15	,	0,03	0,08	0,85		8,00		1,58	6,42		92,12	0,49	1,96) 12,35	12,29	0,12	8,94	,	8,94	0,27	13,37	0,70) 41,63	252			
	0,86	0,60	0,26	0,33	2,00	, '	1,93			0,07		5,00	3,43	0,01	0,55	0,16	0,16	0,12	0,58		8,00		1,73	6,27		96,33	1,42	1,19	5 12,44) 16,18	0,05	5,80	1,44	4,50	1,41	13,52	1,11	3 43,23	269	SM-2	Webs	
	0,83	0,78	0,31	0,47	2,00	, '	1,93			0,07		5,00	3,38	0,01	0,72	0,05	0,17	0,13	0,54		8,00		1,81	6,19		3 97,66	1,67	1,69	1 12,48	3 16,02	0,08	6,35	0,47	5,93	1,50	2 13,76	1,22	42,89	270	4-1-266	térite à	
	0,86	0,68	0,31	0,36	2,00)) '	1,94			0,06		5,00	3,42	,	0,59	0,15	0,16	0,14	0,54		8,00		1,80	6,20		5 96,9	1,68	1,30	3 12,5	2 16,1	0,03	6,11	1,41	4,84	1,37	5 13,7	1,27	9 42,8	279		plagiocla	
	0,83	0,72	0,28	0,43	2,00	, , ,	1,99			0,01		5,00	3,32	0,01	0,69	0,12	0,18	0,14	0,55		8,00		1,84	6,16		1 97,1:	1,52	1,54	3 12,7:	1 15,39	0,08	6,62	1,06	5,67	1,57) 13,9,	1,26	L 42,46	287		se	
	0,83	0,70	0,31	0,39	2,00)) I	1,89		ı	0,11		5,00	3,37	0,01	0,70	ı	0,16	0,13	0,65		8,00		1,70	6,30		5 96,77	1,66	1,39	7 12,19	9 16,05	0,05	5,75	,	5,75	1,37	1 13,74	1,16	5 43,41	294			

61

Tableau VIII : Analyses représentatives des amphiboles de la zone Extension 1

*Note : (1) nombre d'Oxygène = 23 O ; (2) - : limite de détection

SAP SAP <th>Ethantilions S2A-2 S3A-40 S41-76 S12-60 Analyses 17 23 37 50 115 117 52 SiQ, 42,47 43,08 43,58 43,15 45,22 4,69 42,01 TiQ, 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al,0, 1,53 15,53 14,86 15,18 13,19 13,94 15,49 Feo 7,78 8,63 9,08 9,11 43,22 4,13 3,09 Feo 12,19 12,00 11,73 12,22 12,21 11,00 Ma 0,71 0,67 0,46 0,41 0,30 1,92 12,21 Gao 1,13 1,2,07 14,53 14,37 14,38 1,93 1,14 Ma 5,07 0,67 0,46 0,41 0,30 1,17 1,22 Total 5,00 1,87 1,83 1,57 1,63 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Lherzolite</th> <th></th> <th></th> <th></th> <th>Chromitite</th> <th></th> <th></th> <th>Gabbro-</th> <th>norite</th> <th></th> <th></th> <th>Harzbu</th> <th>rgite</th>	Ethantilions S2A-2 S3A-40 S41-76 S12-60 Analyses 17 23 37 50 115 117 52 SiQ, 42,47 43,08 43,58 43,15 45,22 4,69 42,01 TiQ, 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al,0, 1,53 15,53 14,86 15,18 13,19 13,94 15,49 Feo 7,78 8,63 9,08 9,11 43,22 4,13 3,09 Feo 12,19 12,00 11,73 12,22 12,21 11,00 Ma 0,71 0,67 0,46 0,41 0,30 1,92 12,21 Gao 1,13 1,2,07 14,53 14,37 14,38 1,93 1,14 Ma 5,07 0,67 0,46 0,41 0,30 1,17 1,22 Total 5,00 1,87 1,83 1,57 1,63 1						Lherzolite				Chromitite			Gabbro-	norite			Harzbu	rgite
Anyme 17 21 37 90 115 117 21 91 <t< th=""><th>Analyses 17 23 37 50 115 117 52 Slo 42,47 43,08 43,58 43,15 45,22 44,69 42,01 Flo 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al(0, 15,35 15,53 14,86 15,18 13,19 13,94 15,49 Fe,0,3 14,52 14,61 14,53 0,88 9,08 9,11 4,32 4,13 9,09 Fe,0,3 14,52 14,61 14,53 14,37 17,34 1,32 14,33 10,41 1,32 Fe,0,3 11,45 14,57 14,61 14,53 14,37 17,34 1,32 14,33 1,416 14,87 GaO 1,719 12,00 11,73 12,25 12,21 11,00 Ma(D 0,71 0,73 0,46 0,40 0,30 1,487 1,487 GaO 1,80 1,81 1,82 1,47</th><th>S41</th><th>-76</th><th>S12-6</th><th>0</th><th>SO6-42</th><th>T2/2-27</th><th>S16-30</th><th></th><th></th><th>S12-63</th><th></th><th>SO6-32</th><th>S2A-133</th><th></th><th>S12-60</th><th>S12-61</th><th>506</th><th></th></t<>	Analyses 17 23 37 50 115 117 52 Slo 42,47 43,08 43,58 43,15 45,22 44,69 42,01 Flo 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al(0, 15,35 15,53 14,86 15,18 13,19 13,94 15,49 Fe,0,3 14,52 14,61 14,53 0,88 9,08 9,11 4,32 4,13 9,09 Fe,0,3 14,52 14,61 14,53 14,37 17,34 1,32 14,33 10,41 1,32 Fe,0,3 11,45 14,57 14,61 14,53 14,37 17,34 1,32 14,33 1,416 14,87 GaO 1,719 12,00 11,73 12,25 12,21 11,00 Ma(D 0,71 0,73 0,46 0,40 0,30 1,487 1,487 GaO 1,80 1,81 1,82 1,47	S41	-76	S12-6	0	SO6-42	T2/2-27	S16-30			S12-63		SO6-32	S2A-133		S12-60	S12-61	506	
Sing. Lab Lab <thlab< th=""> <thlab< th="" th<=""><th>Sio, 42,47 43,08 43,15 45,22 44,69 42,07 Tio, 0,60 0,69 1.02 1.06 0,59 0,54 0,50 Al,03 15,35 15,53 14,86 15,18 13,19 13,94 15,49 Fe,03 0,16 0,17 0,80 9,08 9,11 4,32 4,13 9,09 Fe,04 9,24 8,63 9,08 9,13 1,327 1,23 1,22 1,21 1,00 Fe,04 12,19 12,00 11,73 12,25 12,22 12,21 1,00 MgO 14,52 14,61 14,87 0,33 1,71 1,33 1,21 1,00 Na,0 8,07 9,839 9,8,99 9,11 2,04 1,02 Site C 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Fe³ 0,72 0,81 0,73 0,64 0,66 0,65 0,66 0,65</th><th>50 11</th><th>5 11:</th><th>7 52</th><th>55</th><th>52</th><th>80</th><th>28</th><th>29</th><th>34</th><th>90</th><th>94</th><th>37</th><th>154</th><th>155</th><th>143</th><th>66</th><th>75</th><th></th></thlab<></thlab<>	Sio, 42,47 43,08 43,15 45,22 44,69 42,07 Tio, 0,60 0,69 1.02 1.06 0,59 0,54 0,50 Al,03 15,35 15,53 14,86 15,18 13,19 13,94 15,49 Fe,03 0,16 0,17 0,80 9,08 9,11 4,32 4,13 9,09 Fe,04 9,24 8,63 9,08 9,13 1,327 1,23 1,22 1,21 1,00 Fe,04 12,19 12,00 11,73 12,25 12,22 12,21 1,00 MgO 14,52 14,61 14,87 0,33 1,71 1,33 1,21 1,00 Na,0 8,07 9,839 9,8,99 9,11 2,04 1,02 Site C 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Fe ³ 0,72 0,81 0,73 0,64 0,66 0,65 0,66 0,65	50 11	5 11:	7 52	55	52	80	28	29	34	90	94	37	154	155	143	66	75	
Int. Obie Dist Lis Lis <thlis< <="" td=""><td>TIO₄ 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al,O₃ 15,35 15,53 14,86 15,18 13,19 13,94 15,49 FeO 7,78 8,63 9,08 9,17 0,22 0,48 0,55 FeO 1,62 8,63 9,08 9,31 13,24 13,94 FeO 1,62 8,63 9,08 9,36 5,98 6,32 10,28 FeO 1,219 12,00 11,73 12,25 12,22 12,21 11,00 Na,O 2,31 2,32 2,37 2,43 1,39 9,52 9,51 Site T 6,12 6,18 6,27 6,17 6,43 6,33 6,08 Al⁶ 0,72 0,81 0,79 0,73 0,64 0,66 0,75 Site C 0,72 0,81 0,79 0,73 0,64 0,66 0,65 Fe³⁺ 0,02 0,02 0,0</td><td>43,15 45,</td><td>22 44,6</td><td>9 42,0</td><td>. 42,45</td><td>45,31</td><td>45,98</td><td>44,31</td><td>44,42</td><td>51,50</td><td>45,57</td><td>45,40</td><td>45,30</td><td>43,12</td><td>43,50</td><td>43,15</td><td>43,83</td><td>43,8</td><td>8</td></thlis<>	TIO ₄ 0,60 0,69 1,02 1,06 0,59 0,54 0,50 Al,O ₃ 15,35 15,53 14,86 15,18 13,19 13,94 15,49 FeO 7,78 8,63 9,08 9,17 0,22 0,48 0,55 FeO 1,62 8,63 9,08 9,31 13,24 13,94 FeO 1,62 8,63 9,08 9,36 5,98 6,32 10,28 FeO 1,219 12,00 11,73 12,25 12,22 12,21 11,00 Na,O 2,31 2,32 2,37 2,43 1,39 9,52 9,51 Site T 6,12 6,18 6,27 6,17 6,43 6,33 6,08 Al ⁶ 0,72 0,81 0,79 0,73 0,64 0,66 0,75 Site C 0,72 0,81 0,79 0,73 0,64 0,66 0,65 Fe ³⁺ 0,02 0,02 0,0	43,15 45,	22 44,6	9 42,0	. 42,45	45,31	45,98	44,31	44,42	51,50	45,57	45,40	45,30	43,12	43,50	43,15	43,83	43,8	8
M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,	$A_{1,0}^{(3)}$ 15,35 14,86 15,18 13,19 13,94 15,49 $Cr_{1,0}^{(3)}$ 0,73 0,80 0,69 0,76 0,32 0,48 0,56 Feo0 7,78 8,63 9,08 9,11 4,32 4,13 9,09 Feo0 12,19 12,00 11,73 12,25 12,22 12,14 13,19 15,44 MnO 0,16 0,14 0,07 0,02 0,13 0,24 1,32 Geo 12,19 12,00 11,73 12,25 12,22 12,21 11,00 MnO 0,71 0,67 0,46 0,41 0,30 0,33 1,71 SiteT 1,88 1,82 1,82 1,73 1,83 1,57 1,67 1,92 Gr 0,71 0,61 0,67 0,11 0,11 0,13 0,12 0,03 1,71 Gr 0,72 0,81 0,73 0,64 0,66 0,07 0,13	1,06 0,	59 0,5	4 0,50	0,47	0,60	0,81	0,74	0,75	0,06	1,37	1,21	1,04	2,29	2,11	1,13	1,73	1,7	ω
Grigic Ory Ory <thory< th=""> <thory< t<="" td=""><td>$C_{1,Q_{3}}^{(1)}$ $0,73$ $0,80$ $0,76$ $0,72$ $0,80$ $0,76$ $0,22$ $0,48$ $0,56$ $0,17$ $4,32$ $4,13$ $9,09$ Feot $1,62$ $0,28$ $9,11$ $4,32$ $4,13$ $9,09$ Feot $0,24$ $8,63$ $9,08$ $9,11$ $4,32$ $4,13$ $9,09$ Feot $0,24$ $0,12$ $0,14$ $0,14$ $0,13$ $1,25$ $12,22$ $12,12$ $12,02$ MnO $0,12$ $0,18$ $1,82$ $1,73$ $18,33$ $1,71$ $14,32$ $6,33$ $1,71$ Total $0,72$ $0,81$ $0,76$ $0,72$ $0,81$ $0,$</td><td>15,18 13,</td><td>19 13,9</td><td>14 15,49</td><td>) 15,31</td><td>14,01</td><td>13,57</td><td>12,86</td><td>13,32</td><td>7,04</td><td>11,55</td><td>12,00</td><td>12,40</td><td>13,28</td><td>13,40</td><td>13,15</td><td>13,08</td><td>13,0</td><td>8</td></thory<></thory<>	$C_{1,Q_{3}}^{(1)}$ $0,73$ $0,80$ $0,76$ $0,72$ $0,80$ $0,76$ $0,22$ $0,48$ $0,56$ $0,17$ $4,32$ $4,13$ $9,09$ Feot $1,62$ $ 0,28$ $9,11$ $4,32$ $4,13$ $9,09$ Feot $0,24$ $8,63$ $9,08$ $9,11$ $4,32$ $4,13$ $9,09$ Feot $0,24$ $0,12$ $0,14$ $0,14$ $0,13$ $1,25$ $12,22$ $12,12$ $12,02$ MnO $0,12$ $0,18$ $1,82$ $1,73$ $18,33$ $1,71$ $14,32$ $6,33$ $1,71$ Total $0,72$ $0,81$ $0,76$ $0,72$ $0,81$ $0,$	15,18 13,	19 13,9	14 15,49) 15,31	14,01	13,57	12,86	13,32	7,04	11,55	12,00	12,40	13,28	13,40	13,15	13,08	13,0	8
G T72 8.6 9.0 9.11 1.30 9.20 9.21 1.30 9.20 9.21 1.30 9.20 9.21 1.30 1.41 7.30 8.00 6.51 6.51 9.20 9.21 1.30 1.41 7.30 7.41 7.30 7.41 7.30 7.41 7.30 7.41 7.30 7.41<	Fe0 7,78 8,63 9,08 9,11 4,32 4,13 9,09 Fe χ_0^3 1,62 - 0.28 1,85 2,44 1,32 FeOt 9,24 8,63 9,08 9,11 4,32 4,13 9,09 MnO 14,52 14,61 14,53 14,51 12,00 13,33 14,31 13,04 MnO 12,19 12,00 11,73 12,25 12,25 12,22 12,21 14,01 Na 6,12 6,13 6,27 6,17 6,43 6,33 1,91 2,00 Site T .	0,76 0,	32 0,4	3 0,56	0,51	0,86	0,25	0,91	1,08	0,25	1,22	1,66	1,30	0,72	0,66	1,50	1,79	1,7	9
Geb, Geb, Geb, Geb, Geb, Geb, Geb, Geb,	$Fe_{0}O_{3}$ $1,62$ $0,28$ $1,85$ $2,44$ $1,32$ $FeOt$ $9,24$ $8,63$ $9,08$ $9,36$ $5,98$ $6,32$ $10,28$ MnO $0,16$ $0,14$ $0,07$ $0,02$ $0,13$ $0,04$ $0,05$ MgO $12,19$ $12,00$ $11,33$ $11,34$ $11,34$ $11,32$ $12,21$ $11,00$ $Na_{2}O$ $2,31$ $2,32$ $2,37$ $2,37$ $12,34$ $1,32$ $12,21$ $11,00$ $Na_{2}O$ $0,71$ $0,67$ $0,46$ $0,41$ $0,30$ $0,33$ $1,71$ $11,67$ $Na_{2}O$ $0,71$ $0,67$ $0,48$ $0,41$ $0,30$ $0,33$ $1,71$ $11,00$ Na_{1}^{16} $0,12$ $6,18$ $6,27$ $6,17$ $6,43$ $6,33$ $6,08$ $A^{1^{4}}$ $0,07$ $0,800$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $Site C$ $0,72$ $0,81$ $0,79$ $0,73$ $0,64$ $0,66$ $0,05$ Ca $0,12$ $0,12$ $0,11$ $0,11$ $0,06$ $0,06$ $0,05$ $Fe^{3^{3}}$ $0,12$ $0,12$ $0,11$ $0,01$ $0,02$ $ Total$ $0,02$ $0,01$ $ 0,02$ $ Mn$ $0,12$ $0,14$ $1,09$ $0,12$ $0,14$ $0,15$ $0,06$ $0,05$ $0,06$ $0,05$ $0,06$ Re^{3} $0,12$ <t< td=""><td>9,11 4,</td><td>32 4,1</td><td>3 9,09</td><td>9,20</td><td>6,87</td><td>4,87</td><td>5,25</td><td>5,93</td><td>3,82</td><td>2,07</td><td>1,71</td><td>4,41</td><td>7,38</td><td>7,44</td><td>8,40</td><td>6,51</td><td>6,5</td><td></td></t<>	9,11 4,	32 4,1	3 9,09	9,20	6,87	4,87	5,25	5,93	3,82	2,07	1,71	4,41	7,38	7,44	8,40	6,51	6,5	
Biolo 924 6.6 9.08 9.36 5.98 6.27 1.02 1.04 6.67 6.57 4.33 4.01 4.11	Fedt9,248,639,089,365,986,3210,28MnO0,160,140,070,020,130,040,05MgO14,5214,6114,5314,3717,3417,1614,87GaO12,1912,0011,7312,2512,2212,2111,00Na,O2,312,322,372,431,891,912,04Na,O0,710,670,460,410,300,331,71Tiotal8,008,008,008,008,008,008,00Af*0,720,810,790,730,640,660,05Cr0,080,090,080,090,040,050,06Fe ³⁺ 0,120,141,091,090,510,491,10Mg0,020,070,110,160,050,060,05Cr0,080,090,090,090,040,050,060,05Mg0,120,141,091,090,243,543,842,91Mg0,120,160,190,120,140,150,305,005,005,00Fe ³⁺ 0,120,141,991,991,200,140,150,305,005,005,005,00Fe ³⁺ 0,120,141,991,991,100,150,305,005,005,005,005,005,005,00	0,28 1,1	35 2,4	4 1,32	1,39	ı	2,20	2,34	1,82	1,12	2,18	2,77	ı	ı	ı	0,56	ı		
MMM OLI OLI <tholi< th=""> <tholi< th=""> <tholi< th=""></tholi<></tholi<></tholi<>	MnO 0,16 0,14 0,07 0,02 0,13 0,04 0,05 MgO 14,52 14,61 14,53 14,37 17,34 17,34 17,16 14,87 GaO 12,19 12,00 11,73 12,25 12,22 12,21 11,00 Na,O 2,31 2,32 2,37 2,43 1,89 1,91 2,04 Site T 6,12 6,13 8,87 98,99 97,18 97,62 98,51 Site C Al ⁶ 0,72 0,81 0,79 0,73 0,64 0,66 0,72 Ital 0,06 0,07 0,11 0,11 0,16 0,05 0,06 Ital 0,02 0,97 2,92 2,94 3,54 3,54 3,54 Ital 0,02 0,02 0,02 0,03 0,20 0,05 0,06 0,05 Ital	9,36 5,9	98 6,3	2 10,28	3 10,45	6,87	6,85	7,35	7,57	4,83	4,03	4,21	4,41	7,38	7,44	8,90	6,51	6,5	-
MMM MMM Liszi Liszi <thliszi< th=""> <thliszi< th=""> Liszi</thliszi<></thliszi<>	MgO 14,52 14,61 14,53 14,37 17,34 <th1< td=""><td>0,02 0,</td><td>13 0,0</td><td>4 0,05</td><td>ı</td><td>0,01</td><td>0,02</td><td>ı</td><td>0,11</td><td>0,15</td><td>ı</td><td>0,09</td><td>0,07</td><td>0,04</td><td>0,02</td><td>ı</td><td>ı</td><td>ı</td><td></td></th1<>	0,02 0,	13 0,0	4 0,05	ı	0,01	0,02	ı	0,11	0,15	ı	0,09	0,07	0,04	0,02	ı	ı	ı	
	GaO 12,19 12,00 11,73 12,25 12,22 12,21 11,00 Na ₂ O 2,31 2,32 2,37 2,43 1,89 1,91 2,04 Site T 6,12 6,13 98,39 98,39 98,99 97,18 97,62 98,51 Site T 6,12 6,13 1,82 1,73 1,83 1,57 1,67 0,62 98,99 97,18 97,62 98,51 Site T 6,12 6,13 6,27 6,17 6,43 6,33 6,03 Al* 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Fe ³⁺ 0,72 0,81 0,79 0,73 0,64 0,66 0,07 Mn 0,02 0,02 0,01 1,01 0,06 0,02 0,01 Re ³⁺ 0,12 0,14 1,09 1,03 0,22 0,01 0,05 0,06 Gr 0,12 0,12 0,12 0,	14,37 17,	34 17,1	.6 14,8	14,22	16,74	17,30	17,18	16,85	20,10	18,96	18,90	17,70	15,26	15,80	15,30	16,05	16,0	Ю
	$N_{a_{2}O$ 2,31 2,32 2,37 2,43 1,89 1,91 2,04 $V_{s_{2}O}$ 0,71 0,67 0,46 0,41 0,30 0,33 1,71 $Site T$ 6,12 6,13 98,47 98,39 98,99 97,18 97,62 98,51 $Site T$ 6,12 6,13 6,27 6,17 6,43 6,33 1,71 Al^{+} 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Fe^{3+} 0,72 0,81 0,79 0,73 0,64 0,66 0,72 Ti 0,06 0,07 0,11 0,11 0,06 0,05 0,06 Fe^{3+} 0,12 0,12 0,12 0,14 0,15 0,04 0,05 0,06 Mm 0,02 0,02 0,02 0,01 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0	12,25 12,	22 12,2	1 11,00) 11,91	11,92	12,51	12,25	12,27	12,70	12,94	12,80	12,50	11,73	12,00	11,89	11,80	11,80	0
GA GA7 GA7 <thga7< th=""> <thga7< th=""> <thga7< th=""></thga7<></thga7<></thga7<>	$k_{y,O}$ $0,71$ $0,67$ $0,46$ $0,41$ $0,30$ $0,33$ $1,71$ Total $98,28$ $98,47$ $98,39$ $98,99$ $97,18$ $97,62$ $98,51$ A^{h} $1,88$ $1,82$ $1,73$ $1,83$ $1,57$ $1,67$ $9,97$ $97,18$ $97,62$ $98,51$ Fe^{3r} $ Al^{6}$ $0,07$ $0,11$ $0,11$ $0,06$ $0,07$ $0,11$ $0,06$ $0,06$ $0,05$ Al^{6} $0,72$ $0,81$ $0,79$ $0,73$ $0,64$ $0,66$ $0,72$ Al^{6} $0,07$ $0,11$ $0,11$ $0,16$ $0,09$ $0,04$ $0,05$ $0,06$ $Gr 0,02 0,20 0,01 0,12 0,12 0,14 0,05 0,06 0,05 0,06 0,05 0,06 0,05 0,00 0,01 $	2,43 1,1	39 1,9	1 2,04	1,93	2,72	1,71	2,28	2,34	1,31	2,18	2,16	1,94	1,74	1,79	1,69	1,80	1,80	
Sher Sigar Sigar <ths< td=""><td>Total98,2898,4798,3997,1897,1298,51Site T$6,12$$6,12$$6,18$$6,27$$6,17$$6,43$$6,33$$6,08$$A^{4}$$1,88$$1,82$$1,73$$1,83$$1,57$$1,67$$1,92$$Fe^{3+}$$0,72$$0,81$$0,79$$0,73$$0,64$$0,66$$0,77$$In^{6}$$0,06$$0,07$$0,11$$0,11$$0,06$$0,06$$0,07$$Fe^{3+}$$0,94$$1,04$$1,09$$0,20$$0,02$$0,01$$0,02$$0,01$$Fe^{3+}$$0,12$$0,12$$0,01$$0,02$$0,02$$0,02$$0,02$$0,02$$0,02$$Mg$$0,12$$0,12$$0,12$$0,14$$0,15$$0,12$$0,14$$0,15$$0,12$$Fe^{3+}$$0,12$$0,12$$0,12$$0,12$$0,14$$0,15$$0,20$$5,00$$5,00$$Fe^{3+}$$0,12$$0,12$$0,12$$0,14$$0,15$$0,20$$5,00$$5,00$$5,00$$5,00$$Fe^{3+}$$0,12$$0,12$$0,14$$0,15$$0,12$$0,14$$0,15$$0,20$$Fe^{3+}$$0,12$$0,12$$0,12$$0,14$$0,15$$0,20$$5,00$$5,00$$Fe^{3+}$$0,12$$0,12$$0,14$$0,15$$0,20$$5,00$$5,00$$5,00$$5,00$$Fe^{3+}$$0,12$$0,12$$0,12$$0,14$$0,15$$0,20$$2,00$</td><td>0,41 0,</td><td>30 0,3</td><td>3 1,71</td><td>1,61</td><td>0,36</td><td>0,45</td><td>0,70</td><td>0,70</td><td>0,10</td><td>0,12</td><td>0,11</td><td>0,80</td><td>1,37</td><td>1,32</td><td>1,74</td><td>1,49</td><td>1,49</td><td></td></ths<>	Total98,2898,4798,3997,1897,1298,51Site T $6,12$ $6,12$ $6,18$ $6,27$ $6,17$ $6,43$ $6,33$ $6,08$ A^{4} $1,88$ $1,82$ $1,73$ $1,83$ $1,57$ $1,67$ $1,92$ Fe^{3+} $0,72$ $0,81$ $0,79$ $0,73$ $0,64$ $0,66$ $0,77$ In^{6} $0,06$ $0,07$ $0,11$ $0,11$ $0,06$ $0,06$ $0,07$ Fe^{3+} $0,94$ $1,04$ $1,09$ $0,20$ $0,02$ $0,01$ $0,02$ $0,01$ Fe^{3+} $0,12$ $0,12$ $0,01$ $0,02$ $0,02$ $0,02$ $0,02$ $0,02$ $0,02$ Mg $0,12$ $0,12$ $0,12$ $0,14$ $0,15$ $0,12$ $0,14$ $0,15$ $0,12$ Fe^{3+} $0,12$ $0,12$ $0,12$ $0,12$ $0,14$ $0,15$ $0,20$ $5,00$ $5,00$ Fe^{3+} $0,12$ $0,12$ $0,12$ $0,14$ $0,15$ $0,20$ $5,00$ $5,00$ $5,00$ $5,00$ Fe^{3+} $0,12$ $0,12$ $0,14$ $0,15$ $0,12$ $0,14$ $0,15$ $0,20$ Fe^{3+} $0,12$ $0,12$ $0,12$ $0,14$ $0,15$ $0,20$ $5,00$ $5,00$ Fe^{3+} $0,12$ $0,12$ $0,14$ $0,15$ $0,20$ $5,00$ $5,00$ $5,00$ $5,00$ Fe^{3+} $0,12$ $0,12$ $0,12$ $0,14$ $0,15$ $0,20$ $2,00$	0,41 0,	30 0,3	3 1,71	1,61	0,36	0,45	0,70	0,70	0,10	0,12	0,11	0,80	1,37	1,32	1,74	1,49	1,49	
Sike T Sike T 6.12 6.17 6.17 6.33 6.33 6.08 6.12 6.30 6.23 7.16 6.34 6.34 6.35 6.30 6.27 7.16 At 1.88 1.22 1.73 1.83 1.57 1.57 1.92 1.88 1.61 1.00 1.71 1.73 0.84 1.55 1.70 1.73 1.83 1.55 1.70 1.73 1.84 1.55 1.70 1.73 1.84 1.85 1.70 1.73 1.84 1.85 1.80 1.83 1.55 1.70 1.73 1.84 1.85 1.70 1.73 1.84 1.85 1.70 1.73 1.84 1.85 1.70 1.73 1.85	Site T $6,12$ $6,18$ $6,27$ $6,17$ $6,43$ $6,33$ $6,08$ Al^4 $1,88$ $1,82$ $1,73$ $1,83$ $1,57$ $1,67$ $1,92$ $Total$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $8,00$ $Site C$ $0,72$ $0,81$ $0,79$ $0,73$ $0,64$ $0,66$ $0,97$ Ti $0,06$ $0,07$ $0,11$ $0,11$ $0,06$ $0,06$ $0,05$ C^2 $0,94$ $1,09$ $0,99$ $0,91$ $0,06$ $0,06$ $0,05$ Fe^{3*} $0,18$ $ 0,03$ $0,20$ $0,26$ $0,14$ Mn $0,02$ $0,02$ $0,01$ $0,02$ $0,01$ $0,02$ $0,01$ Fe^{3*} $0,12$ $0,14$ $0,19$ $3,54$ $3,48$ $2,91$ $Total$ $5,00$ $5,00$ $5,00$ $5,00$ $5,00$ $5,00$ Fe^{3*} $0,12$ $0,14$ $0,15$ $0,30$ $5,00$ $5,00$ Fe^{3*} $0,12$ $0,14$ $0,15$ $0,20$ $5,00$ $5,00$ Fe^{3*} $0,12$ $0,14$ $0,12$ $0,14$ $0,15$ $0,30$ Fe^{3*} $0,12$ $0,14$ $0,12$ $0,14$ $0,15$ $0,30$ Fe^{3*} $0,12$ $0,14$ $1,18$ $1,18$ $1,18$ $1,18$ $1,17$ $Total$ $0,12$ $0,14$ $0,12$ $0,14$ $0,15$ $0,52$ $0,52$ $0,52$ Na <	98,99 97,	18 97,6	2 98,5	. 98,86	99,40	99,45	98,58	99,41	98,10	97,94	98,60	97,50	96,93	98,10	98,45	98,08	98,08	
	Si 6,12 6,18 6,27 6,17 6,43 6,33 6,08 Al^4 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Total 8,00 8,0																		
	Al^4 1,88 1,82 1,73 1,83 1,57 1,67 1,92 Fe^{3+} - 0.01 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <td>6,17 6,</td> <td>13 6,3</td> <td>3 6,08</td> <td>6,12</td> <td>6,39</td> <td>6,40</td> <td>6,29</td> <td>6,27</td> <td>7,16</td> <td>6,41</td> <td>6,34</td> <td>6,45</td> <td>6,30</td> <td>6,27</td> <td>6,24</td> <td>6,32</td> <td>6,32</td> <td></td>	6,17 6,	13 6,3	3 6,08	6,12	6,39	6,40	6,29	6,27	7,16	6,41	6,34	6,45	6,30	6,27	6,24	6,32	6,32	
	Fe^{3*} - 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	1,83 1,	57 1,6	7 1,92	1,88	1,61	1,60	1,71	1,73	0,84	1,59	1,66	1,55	1,70	1,73	1,76	1,68	1,68	
Train 8,00 <	Total 8,00 <				,	,			,	,			'	,	,				
All O/Z O/Z <td>Site C Site C Al^6 0,72 0,81 0,79 0,73 0,64 0,66 0,05 T 0,06 0,07 0,11 0,11 0,06 0,06 0,05 C^* 0,94 1,09 1,09 0,09 0,04 0,05 0,06 Fe^{2*} 0,18 - - 0,03 0,20 0,26 0,10 Fe^{2*} 0,18 - - 0,03 0,20 0,26 0,14 Mn 0,02 0,01 - 0,02 - 0,01 Mg 3,00 2,97 2,92 2,94 3,54 3,48 2,91 Mg 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Fe^{2*} - <</td> <td>8,00 8,0</td> <td>)0 8,0</td> <td>0 8,00</td> <td>8,00</td> <td></td>	Site C Site C Al^6 0,72 0,81 0,79 0,73 0,64 0,66 0,05 T 0,06 0,07 0,11 0,11 0,06 0,06 0,05 C^* 0,94 1,09 1,09 0,09 0,04 0,05 0,06 Fe^{2*} 0,18 - - 0,03 0,20 0,26 0,10 Fe^{2*} 0,18 - - 0,03 0,20 0,26 0,14 Mn 0,02 0,01 - 0,02 - 0,01 Mg 3,00 2,97 2,92 2,94 3,54 3,48 2,91 Mg 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Fe^{2*} - <	8,00 8,0)0 8,0	0 8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	8,00	
AA AA<	AI^{B} 0.72 0.81 0.73 0.64 0.66 0.72 Ti 0.06 0.07 0.11 0.11 0.06 0.07 Fe^{2n} 0.94 1.04 1.09 1.09 0.05 0.06 Fe^{2n} 0.94 1.04 1.09 1.09 0.02 0.01 Fe^{2n} 0.18 - - 0.03 0.02 0.04 0.05 Mn 0.02 0.02 0.01 - 0.02 0.01 - 0.01 Mg 3.00 2.97 2.92 2.94 3.54 3.48 2.91 Total 5.00 5.00 5.00 5.00 5.00 5.00 Mn - - - - - - - - Ma 0.12 0.14 0.15 0.30 - - - - - - - - - - - - - -<																		
	Ti 0.06 0.07 0.11 0.11 0.06 0.05 Cr 0.08 0.09 0.08 0.09 0.08 0.09 0.06 0.06 0.05 Fe ²⁺ 0.94 1.04 1.09 1.09 0.03 0.20 0.26 0.11 Mn 0.02 0.02 0.01 - 0.03 0.20 0.26 0.14 Mn 0.02 0.02 0.01 - 0.03 0.20 0.26 0.14 Mn 0.02 2.92 0.94 3.54 3.48 2.91 Total 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Site B 0.12 0.14 0.15 0.30 - <t< td=""><td>0,73 0,</td><td>54 0,6</td><td>5 0,72</td><td>0,73</td><td>0,71</td><td>0,63</td><td>0,44</td><td>0,49</td><td>0,31</td><td>0,32</td><td>0,32</td><td>0,53</td><td>0,59</td><td>0,55</td><td>0,48</td><td>0,55</td><td>0,55</td><td></td></t<>	0,73 0,	54 0,6	5 0,72	0,73	0,71	0,63	0,44	0,49	0,31	0,32	0,32	0,53	0,59	0,55	0,48	0,55	0,55	
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0,11 0,1	0,0	5 0,05	0,05	0,06	0,08	0,08	0,08	0,01	0,14	0,13	0,11	0,25	0,23	0,12	0,19	0,19	
	Fe^{2*} 0,94 1,04 1,09 1,01 0,11 Fe^{3+} 0,18 - - 0,03 0,20 0,26 0,11 Mn 0,02 0,02 0,01 - 0,03 0,20 0,26 0,11 Mg 3,00 2,97 2,92 2,94 3,54 3,48 2,91 $Total$ 0,12 0,16 0,19 0,12 0,14 0,15 0,30 $Site B$ 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Mg 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Fe^{3*} - - <t< td=""><td>0,09 0,0</td><td>)4 0,0</td><td>5 0,06</td><td>0,06</td><td>0,10</td><td>0,03</td><td>0,10</td><td>0,12</td><td>0,03</td><td>0,14</td><td>0,18</td><td>0,15</td><td>0,08</td><td>0,08</td><td>0,17</td><td>0,20</td><td>0,20</td><td></td></t<>	0,09 0,0)4 0,0	5 0,06	0,06	0,10	0,03	0,10	0,12	0,03	0,14	0,18	0,15	0,08	0,08	0,17	0,20	0,20	
	Fe^{3+} 0,18 - 0,03 0,20 0,26 0,14 Mn 0,02 0,02 0,01 - 0,02 0,01 Mg 3,00 2,97 2,92 2,94 3,54 3,48 2,91 Total 5,00 5,00 5,00 5,00 5,00 5,00 5,00 Site B 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Mg 0,12 0,16 0,19 0,12 0,14 0,15 0,30 Fe ²⁺ - -<	1,09 0,	51 0,4	9 1,10	1,11	0,81	0,57	0,62	0,70	0,45	0,24	0,20	0,53	0,90	0,90	1,02	0,79	0,79	
		0,03 0,	20 0,2	5 0,14	0,15		0,23	0,25	0,19	0,12	0,23	0,29				0,06			
		- 0,1	- 12	0,01			·	·	0,01	0,02		0,01	0,01	·	·			·	
Total5,005	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,94 3,	54 3,4	3 2,91	2,90	3,32	3,46	3,50	3,40	4,07	3,92	3,87	3,68	3,16	3,25	3,14	3,28	3,28	
Site B 0,12 0,16 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,13 0,14 0,14 0,14 0,10 0,05 0,08 0,09 0,16 0,16 0,18 0,18 0,18 Mg <	Site B $0,12$ $0,16$ $0,19$ $0,12$ $0,14$ $0,15$ $0,30$ Mg $0,12$ $0,16$ $0,19$ $0,12$ $0,14$ $0,15$ $0,30$ Fe ²⁺ $ -$ Mn $ -$ Ca $1,88$ $1,84$ $1,81$ 1.88 $1,86$ $1,85$ $1,70$ Na $ -$ Ste A $0,64$ $0,65$ $0,66$ $0,67$ $0,52$ $0,52$ $0,52$ $0,52$ $0,52$ $0,52$ $0,52$ $0,58$ $0,32$ Na $0,73$ $0,77$ $0,75$ $0,74$ 0.88 0.84 0.74	5,00 5,1)0 5,0	0 5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	
Mg0,120,140,150,120,140,150,120,140,150,200,130,140,140,100,050,080,090,160,160,160,160,180,18Fe ³⁺																			
Fe ¹ - - <td>Fe²⁺ -<td>0,12 0,</td><td>L4 0,1</td><td>5 0,30</td><td>0,16</td><td>0,20</td><td>0,13</td><td>0,14</td><td>0,14</td><td>0,10</td><td>0,05</td><td>0,08</td><td>0,09</td><td>0,16</td><td>0,16</td><td>0,16</td><td>0,18</td><td>0,18</td><td></td></td>	Fe ²⁺ - - <td>0,12 0,</td> <td>L4 0,1</td> <td>5 0,30</td> <td>0,16</td> <td>0,20</td> <td>0,13</td> <td>0,14</td> <td>0,14</td> <td>0,10</td> <td>0,05</td> <td>0,08</td> <td>0,09</td> <td>0,16</td> <td>0,16</td> <td>0,16</td> <td>0,18</td> <td>0,18</td> <td></td>	0,12 0,	L4 0,1	5 0,30	0,16	0,20	0,13	0,14	0,14	0,10	0,05	0,08	0,09	0,16	0,16	0,16	0,18	0,18	
Mn -	Mn -	•																	
Ca 1,88 1,84 1,81 1,88 1,86 1,85 1,70 1,84 1,87 1,86 1,86 1,90 1,92 1,91 1,84 1,84 1,82 1,82 1,82 Na - <td< td=""><td>Ca 1,88 1,84 1,81 1,88 1,86 1,85 1,70 Na -</td></td<> <td>•</td> <td></td> <td>ı</td> <td>ı</td> <td>ı</td> <td></td> <td>ı</td> <td>ı</td> <td>,</td> <td>ı</td> <td>ı</td> <td>,</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td></td>	Ca 1,88 1,84 1,81 1,88 1,86 1,85 1,70 Na -	•		ı	ı	ı		ı	ı	,	ı	ı	,	ı	ı	ı	ı	ı	
Na -	Na -	1,88 1,	36 1,8	5 1,70	1,84	1,80	1,87	1,86	1,86	1,90	1,95	1,92	1,91	1,84	1,84	1,84	1,82	1,82	
Total 2,00 <t< td=""><td>Total 2,00 <t< td=""><td>•</td><td></td><td></td><td>ı</td><td>ı</td><td></td><td>ı</td><td>ı</td><td></td><td>ı</td><td>ı</td><td>ı</td><td>·</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td></td></t<></td></t<>	Total 2,00 <t< td=""><td>•</td><td></td><td></td><td>ı</td><td>ı</td><td></td><td>ı</td><td>ı</td><td></td><td>ı</td><td>ı</td><td>ı</td><td>·</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td></td></t<>	•			ı	ı		ı	ı		ı	ı	ı	·	ı	ı	ı	ı	
Site A Na 0,64 0,65 0,66 0,67 0,52 0,57 0,54 0,46 0,63 0,64 0,35 0,59 0,54 0,49 0,50 0,50 0,50 Na 0,13 0,12 0,08 0,05 0,06 0,22 0,20 0,21 0,20 0,21 0,22 0,22 0,22 0,22 0,24 0,32 0,27 0,27 K 0,13 0,12 0,02 0,02 0,15 0,26 0,24 0,32 0,27 0,27 Total 0,78 0,77 0,75 0,58 0,89 0,81 0,54 0,75 0,71 0,37 0,62 0,61 0,68 0,74 0,80 0,78 0,78	Site A 0,64 0,65 0,66 0,67 0,52 0,52 0,57 Na 0,64 0,65 0,66 0,67 0,52 0,52 0,57 K 0,13 0,12 0,08 0,07 0,05 0,06 0,32 Total 0,78 0,77 0,75 0,75 0,58 0,88 0,88 Mp# 0,77 0.75 0.74 0.74 0.88 0.74	2,00 2,0)0 2,0	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	
Na 0,64 0,65 0,66 0,67 0,52 0,57 0,54 0,74 0,46 0,63 0,64 0,35 0,59 0,54 0,49 0,50 0,47 0,50 0,50 K 0,13 0,12 0,08 0,07 0,05 0,06 0,32 0,30 0,06 0,08 0,13 0,13 0,02 0,02 0,02 0,15 0,26 0,24 0,32 0,27 0,27 Total 0,78 0,77 0,75 0,75 0,58 0,89 0,84 0,81 0,54 0,75 0,77 0,37 0,62 0,61 0,68 0,75 0,74 0,80 0,78 0,78	Na 0,64 0,65 0,66 0,67 0,52 0,52 0,57 K 0,13 0,12 0,08 0,07 0,05 0,06 0,32 Total 0,78 0,77 0,75 0,75 0,58 0,89 Mp# 0,77 0,75 0,74 0,88 0,88 0,74																		
K 0,13 0,12 0,08 0,07 0,05 0,06 0,32 0,30 0,06 0,08 0,13 0,13 0,02 0,02 0,02 0,15 0,26 0,24 0,32 0,27 Total 0,78 0,77 0,75 0,75 0,58 0,89 0,84 0,81 0,54 0,75 0,77 0,37 0,62 0,61 0,68 0,75 0,74 0,80 0,78 0,78	K 0,13 0,12 0,08 0,07 0,05 0,06 0,32 Total 0,78 0,77 0,75 0,75 0,58 0,58 0,89 Mo# 0.77 0.75 0.74 0.78 0.88 0.74	0,67 0,	52 0,5	2 0,57	0,54	0,74	0,46	0,63	0,64	0,35	0,59	0,59	0,54	0,49	0,50	0,47	0,50	0,50	
Total 0,78 0,77 0,75 0,75 0,58 0,58 0,89 0,84 0,81 0,54 0,75 0,77 0,37 0,62 0,61 0,68 0,75 0,74 0,80 0,78 0,78	Total 0,78 0,77 0,75 0,75 0,58 0,89 Mo# 0,77 0,75 0,74 0,78 0,58 0,74	0,07 0,0)5 0,0	5 0,32	0,30	0,06	0,08	0,13	0,13	0,02	0,02	0,02	0,15	0,26	0,24	0,32	0,27	0,27	
	Ma# 0.77 0.75 0.74 0.74 0.88 0.88 0.74	0.75 0.	58 0,5	3 0,89	0,84	0,81	0,54	0,75	0,77	0,37	0,62	0,61	0.68	0,75	0,74	0,80	0,78	0,78	
	Mo# 077 075 074 074 088 088 074																		

Tableau IX: Analyses représentatives des amphiboles de la zone Principale

Franklinite Jacobsite Trevorite	Jacobsite			Ulvospinel	Magnétite	Magnésiofe	Galaxite	Gahnite	Hercynite	Spinelle	Selon la cla	Total	% Magnétit	% Spinelle	% Chromite	Mg#=Mg/(N	Cr#=Cr ³⁺ /(Ci	Fe ³⁺ /(Cr ³⁺ +A	Fe ²⁺ / (Mg +	Total	~	Na	Ca	Mg	Zn	Mn	Fe ³⁺	Fe ²⁺	Cr	AI	1	Si	Total	K ₂ 0	Na ₂ O	CaO	MgO	ZnO	MnO	FeOt	FeO	Cr ₂ O ₃	Al ₂ O ₃	TiO ₂	SiO2	Analyses	Echantillons	Roches	Cito	
						rite.					sification c		U			1g+Fe ²⁺)	-3++Al3+)	¹³⁺ +Fe ³⁺)	Fe ²⁺)																										(%)					
				0,36	9,21	6,44	0,01		30,44	20,47	le Deer et al.	100,0	16,01	50,91	33,08	0,40	0,39	0,16	0,60	24		0,02		3,24	nd		2,53	4,82	5,23	8,05	0,10	0,01	98,88		0,04	0,01	8,63	nd	0 01	13,35 34 88	12,87	26,28	27,14	0,52	0,03	487	SM24-1-102	Chromitite	Extension 1	_
		0,01		0,42	10,01	5,98	0,04		31,46	18,03	(1983),	100,0	16,42	49,53	34,05	0,36	0,41	0,16	0,64	24		0,04		2,93	nd	0,01	2,59	5,11	5,37	7,82	0,11	0,02	98,29	,	0,08		7,69	nd	50 N	13,46 36.00	23,89	26,57	25,95	0,57	0,07	488				
		0,21		2,75	42,89	8,59	0,06	,	11,94	2,25		100,0	54,44	14,25	31,32	0,16	0,69	0,54	0,84	24		0,13	0,01	1,30	nd	0,03	8,20	6,93	4,72	2,15	0,53	,	97,72	0,01	0,22	0,02	2,98	nd	0 13	57,15 61 67	28,24	20,35	6,21	2,38	0,02	491				
•		0,22		2,77	43,38	8,08	0,06	'	12,12	2,12		100,0	54,45	14,30	31,25	0,15	0,69	0,54	0,85	24		0,03	,	1,25	nd	0,03	8,16	7,17	4,68	2,14	0,52		97,47	0,01	0,05		2,85	nd	0 14	30,70 67 17	29,04	20,10	6,17	2,35	,	492				_
•		0,04		0,25	7,27	5,72	0,15	'	28,73	21,84		100,0	13,28	50,72	36,00	0,43	0,42	0,13	0,57	24		0,02	,	3,47	nd	0,02	2,10	4,57	5,69	8,01	0,07	0,04	98,31	,	0,04		9,26	nd	0 11	31 65	21,69	28,58	27,02	0,38	0,15	496				
		0,01		0,04	3,38	3,79	0,15	,	36,87	40,92		100,0	7,22	77,95	14,83	0,53	0,16	0,07	0,47	24		·	·	4,20	nd	0,02	1,15	3,79	2,37	12,45	0,01	,	98,84	0,01	,	0,01	12,40	nd	0 08	סק סק סק סק	19,90 <i>c</i> 73	13,18	46,46	0,08	ı	440	SM24 -	Lherzo		
		0,02		0,06	3,15	3,37	0,20	'	38,24	40,22		100,0	6,60	78,67	14,73	0,51	0,16	0,07	0,49	24		'	,	4,09	nd	0,02	1,05	3,89	2,35	12,56	0,02		99,04	0,02	·	0,01	12,09	nd	0 11	07 U 3 0 U 3	20,49	13,10	46,94	0,12	,	441	·1-83	lite		
		0,03		0,04	3,33	4,14	0,27	'	34,83	42,78		100,0	7,53	77,88	14,58	0,55	0,16	0,08	0,45	24			,	4,56	nd	0,03	1,16	3,71	2,24	11,99	0,01	0,29	96,94	0,01	'	0,01	13,24	nd	0 15	0,00 25,20	19,20 6 66	12,29	44,04	0,08	1,26	452				
	0.07	0,12	0.09	0,20	7,32	4,72	0,60	0,42	36,87	23,14		100,0	12,51	61,03	26,46	0,39	0,30	0,13	0,61	24		0,04	0,01	3,01	0,05	0,08	1,99	4,79	4,21	9,71	0,05	0,01	99,61	0,01	0,08	0,03	8,38	0.31	0 38 U	23 68	23,79	22,14	34,27	0,30	0,03	ω 5	SM1-18			
	0.06	0,12	0.08	0,16	7,60	4,58	0,57	0,41	38,05	22,46		100,0	12,60	61,50	25,91	0,37	0,30	0,13	0,63	24		·	0,01	2,92	0,05	0,07	2,00	4,95	4,12	9,78	0,04	0,01	100,28	0,01	0,01	0,02	8,18	0.30	0 37	11,12 34 69	24,69	21,77	34,68	0,23	0,03	38	32			
0,00	0.08	0,13	0.09	0,11	8,89	5,36	0,52	0,36	35,89	21,39		100,0	14,66	58,16	27,18	0,37	0,32	0,15	0,63	24		·		2,94	0,05	0,07	2,34	4,93	4,33	9,27	0,03	0,01	99,19	ī	ŀ	0,01	8,08	0.27	0 35	35.60	24,16	22,46	32,25	0,15	0,02	л				
0,10	0.46	0,86	0.08	0,70	70,55	5,18	80,0	0,01	6,66	0,48		100,0	77,83	7,24	14,93	0,07	0,67	0,78	0,93	24		0,02	,	0,54	0,01	0,09	12,28	7,39	2,36	1,14	0,12	ı	95,75	,	0,04	0,01	1,23	0.04	0 36	20,05	30,09	10,15	3,30	0,55	0,01	68	SM1-6	Webst		
0,01	0.02	0,05	0.18	0,02	2,74	3,52	0,62	2,17	33,15	42,27		100,0	6,53	78,20	15,27	0,56	0,16	0,07	0,44	24			0,01	4,31	0,22	0,06	1,04	3,38	2,44	12,50	0,01	,	101,07	0,01	'	0,04	13,12	1.36	0 34	0,29	18,33	14,01	48,16	0,04	0,01	06	7,8	érite à ol		
0,00	0.33	0,01 1,11	0.01	0,97	69,33	5,57	0,10		6,29	0,50		100,0	77,32	6,89	15,79	0,07	0,70	0,77	0,93	24		0,03	,	0,58	,	0,12	12,12	7,38	2,47	1,08	0,17	0,01	95,78	,	0,06		1,34	0.01	0 47	54,80 79 3 3	30,02	10,66	3,12	0,77	0,04	94	4	ivine		
0,01	0.02	0,06	0.19	0,02	3,41	3,96	0,63	1,86	34,47	39,79		100,0	7,65	76,76	15,59	0,54	0,17	0,08	0,46	24			,	4,14	0,19	0,07	1,22	3,59	2,49	12,27	0,01	,	100,9	,		0,01	12,50	1.18	0 35	25.86	19,29	14,18	46,84	0,04	0,02	67				
	-	0,01	1	0,04	2,69	3,21	0,11	1	7 38,39	9 45,15) 100,0	5,96	83,65	10,40	0,54	0,11	0,06	0,46	24				4,32	nd	0,01	0,95	3,68	1,66	13,36	0,01	·	8 99,15			0,01	13,05	nd	0.06	5,08 94.89	9 19,77 E 60	3 9,45	1 51,03	0,09	1	398	SM24 -1-	באנפוואוט	Extensio	
		0,01		0,03	2,45	3,06	0,19		37,79	46,59		100,0	5,55	84,56	9,88	0,55	0,10	0,06	0,45	24				4,42	nd	0,02	0,88	3,59	1,58	13,48	0,01	0,02	98,33				13,31	nd	0 09	72,C	19,24 E 77	8,94	51,33	0,06	0,09	400	-118	-	1	
		0,01		0,05	2,48	3,05	0,10		38,38	46,28		100,0	5,58	84,76	9,66	0,55	0,10	0,06	0,45	24	0,01	0,04		4,32	nd	0,01	0,89	3,58	1,55	13,57	0,02	,	-9,66	0,05	0,08	0,01	13,18	nd Di	0 05	5,39 74 3.3	19,4; 5 20	8,90	52,39	0,11	ı	416				
		0,01			2,63	3,24	0,12		3 37,51	3 46,11) 100,0	5,88	5 83,75	10,37	0,55	0,11	0,06	0,45	24		0,01	,	4,40	nd	0,01	0,94	3,58	1,66	7 13,38	1	0,01	1 99,46	,	0,03		13,37	nd	0.06	5,05 74 46	7 19,37	9,49) 51,42	0,01	0,07	397				
		0,01			1,52	2,57	0,17	'	35,22	59,36		100,0	4,10	94,75	1,15	0,63	0,01	0,04	0,37	24		,	,	5,01	nd	0,01	0,66	2,97	0,18	15,16	ı	,	99,95	0,01	'	0,02	16,06	nd	0 08	4,1/	16,98	1,11	61,53		,	299	SM-2	Webs		
		0,01		0,01	1,65	2,67	0,20		36,01	57,91		100,0	4,34	94,12	1,54	0,62	0,02	0,04	0,38	24		0,04		4,88	nd	0,02	0,69	3,04	0,25	15,06	,	0,02	100,7	0,01	0,10		15,72	nd	0 10	4,43 21 Ar	17,41	1,49	61,36	0,03	0,09	304	1-1-97	térite		
0,00	0.03	0,02	0.03	0,01	2,68	3,87	0,29	0,39	. 35,05	. 50,30) 100,0	6,65	86,03	7,32	0,59	0,08	0,07	0,41	24		0,01		4,65	0,04	0,03	1,06	3,24	1,17	13,76	0,01	,	4 99,69	0,01	0,02	0,01	14,4/	0.23	0 14	0,55 03.83	. 17,93	6,86	54,12	0,03	0,01	47	SM1-			
0,01	0.04	0,02	0.03		2,94	4,15	0,29	0,34	5 34,6:) 48,8) 100,0	7,17	3 84,09	8,74	0,59	0,09	0,07	0,41	24				4,62	0,03	0,03	1,15	3,27	1,40	5 13,4!	1		9 100,2	1	,		14,3,	0.20	015	7,U5	3 18,10	8,18	2 52,8:		1	51	217,5			
0,0-	0.0	0,02	0.0		2,52	ω,ω	0,32	. 0,38	1 36,4	5 48,9		0 100,	5,99	9 86,1	7,92	0,57	0,08	0,06	0,43	24				4,61	0,02	0,03	2,0	3,43	1,24	5 13,5	,	0,15	2 99,2	,			4 14,2	0.22	0.16	5,75 04 0	18,8	7,22	1 52,7		0,69	63				
		0,0		0,06	2 2,32	9 2,29	2 0,2		5 42,8	5 41,2		0 100,	9 4,69	0 84,3	2 10,9	7 0,49	3 0,1:	5 0,05	3 0,5:	24			0,0	1 3,92	4 nd	3 0,03	4 0,75	3 4,07	4 1,74	2 13,4	0,0	0,0	0 98,1			0,02	0 11,6	nd nd	5 0 1:	0 4,30	4 21,5	2 9,76	0 50,5	0,12	9 0,03	358	SM2			
		1 0,01		5 0,07	2 3,96) <u>3,75</u>	7 0,11		8 39,2	3 36,6		0 100,	9 7,75	7 75,9	14 16,2	9 0,48	1 0,18	5 0,08	1 0,52	24			-	2 3,86	nd	3 0,01	5 1,24	7 4,14	1 2,59	6 12,1	2 0,02	-	0 98,6	0,01		-+	2 11,2	nd		9 7,1× 9 77 8	4 21,4	5 14,1	2 44,5	2 0,12	,	368	4 -1-156			
				⁷ 0,06	5 2,12	2,17	,0,07	,	6 40,4	0 40,2		0 100,	9 4,36	7 80,7	3 14,9	3 0,50	3 0,16	3 0,04	0,50	24			0,01	5 4,01	nd	1. 0,01	1 0,69	1 4,02) 2,37	2 12,8	0,02	0,03	0 98,1	. 0,01		0,03	0 11,78	nd	0 04	5 4,04 7 74 74	2 21,0	7 13,1.	1 47,7,	? 0,11	0,13	373				
1		0,0		0,0	2 4,18	7 3,3	7 0,21		[!] 1 41,2	14 33,C		0 100	5 7,6	'3 74,5	11 17,8	0,4	5 0,1	4 0,0,) 0,5	24			- 1	1 3,5	nd	1 0,0.	9 1,2	2 4,41	7 2,8.	4 11,8	2 0,0	3 0,0	.0 98,0	-			8 10,1	nd .	1 0 1	4 b,8	1 22,6	5 15,2	'8 42,7	1 0,0.	3 0,1:	378				

*Note : (1) nombre d'Oxygène = 32 O ; (2) nd = non déterminé ; (3) - : limite de détection

C			Trevorite -	lacobeite 0 f	Eranklinita -		Magnétite 1 0	Magnésioferrite 2.8	Galavite 0.0	Gahnite -	Hercynite 36,	Spinelle 54,	Selon la classification de De	Total 10	% Magnétite 4,.	ne spinelle		% Chromita 1 :	$Matt = Ma / (Ma + Ee^{2+}) \qquad 0 $	$Cr\# = Cr^{3+}/(Cr^{3+}+A ^{3+})$ 0.0	Fe ²⁺ /(Mg+Fe ²⁺⁾ 0,2	Fe ³⁺ /(Cr ³⁺ +Al+Fe ³⁺) 0,(Iotal 2			Na	Ca n	Mg 4,8	Zn n.	Mn 0,0	Fe ³⁺ 0,:	Fe ²⁺ 3,;	Cr 0,t	Al 14,		Si 0,t	LOCAL	Total 103	K D 2	n O EN	CaO	MgO 15,	ZnO	MnO 0,:	FeOt 23,	Fe, O ₃ 4, 5	FeO 18,	Cr ₂ O ₃ 4,:	Al ₂ O ₃ 59,	TiO ₂ -	SiO ₂ (%) 0,.	Analyses 5.		Echantillons T2/;	Roche Har	Site Zon		Tableau XI: Analyse
	200 2,4	۰ د						20 0,-	0 NC		30 36,	37 54,	er et al. (0,0 10	4,2	да да	0/ +,-	21 7.	20	0.0	40 0,2	0,0	4	2	<u>-</u> -	d n	d D	31 4,8	d n	0,0 20	77 0,6	21 3,2	59 O,6	46 14,	0,0	04 0,0	,00	60 103	<u> </u>		n .	71 15,	<u>р</u>	10 0,2	16 22,	97 4,3	69 18,	22 4,0	73 60,	,0,1	21 0,3	9 6		2-27	zburgite	e nrincina		s repré
	+9 2,0	, c	-			- ⁻	1 2	, t , t	10 0 /		19 38,	91 52,	1983),	0,0 100	28 4,4	у У У У У У У У У У У	· · ·		0	0.0	2,0 Of	0,0	4		<u> </u>	n n	d n	35 4,6	d n	04 0,0	58 0,7	20 3,3	55 0,7	48 14,	- 50	06 0,1	, O 100	20 103		2	d n	89 15,	d .	25 0,2	61 23,	39 4,5	66 19,)3 4,4	01 58,	- 00	31 0,5	0 7,			i	Ð	000000	entat
	2,0	5	ř	3		, T'C	1 5	57 D C,C	11 01		05 36,	44 53,),0 100	4,5	91 90,	00 1		0	0.0	12 0,2	0,0	7			'n	D D	58 4,8	d n)4 0,0	70 0,7	39 3,2	73 0,7	35 14,		11 0,0		50 103		2	n .	18 15,	n -	21 0,0	69 23,	52 4,6	63 19,	18 4,6	91 59,		53 0, <i>2</i>	4 7						IVes de
	04 7,4	1 -	-			, u	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,2 0,2 0,2			77 41,	85 35,),0 100	51 6,4	/1 //,	10 IU,	10 16	0 2	0.1	11 0,5	0,0	7			n	d no	30 3,6	d no)1 0,0	⁷ 1 1,C	28 4,3	76 2,6	35 12,)9 O,C	100	60 100			n .	65 10,	n -)4 0,1	18 28,	50 6,C	04 22,	55 14,	16 46,		14 0,C	5 73		Soe-			2070	S Spin
	, o	- 10	- v,v		- ⁰ ,0	, r		,,, N	ה ה ה		70 40,6	32 36,0		,0 100	6,2	U, / / 67	20 10,7	7 AL 80	0.4	7 0.1	0,5	0,0	+ 24		nd i	nd	nd	6 3,7	bu F	0,0	1,0	4,2:	2,6	36 12,3	0,0	- 10		47 09 8	nd i	nd	nd	81 11,0	h n	.4 0,1:	15 27,4)1 5,8	74 22,1	50 14,7	19 45,7	0,0	0,0	3 74		. 116				
	0 0,00	ח ק י		2 0 0	+ • •,•-		2 2 2 2	л с, с, с, , с, с,	2 0 2		32 38,9)5 44,6		,0 100,	9 5,17	0,65 T		in 11 n	ч Ол	8 0.12	3 0,47	6 0,05	24		nd	nd	nd	5 4,29	nd	3 0,02	0 0,82	3 3,74	7 1,75	13,3	1 0,01	0,02		103 2	nd i	nd	nd)3 13,5	nd	8 0,11	1 25,5	5 5,11	.5 20,9	9 10,3	'6 53,0	7 0,07	1 0,20	105		S41-7	Webs			
	2,05		- 0,04				יד, כ ד, נ	υ (1 μ	1 0 2/		4 38,0	6 44,9		0 100,	7 5,80	1 83,3	2 DUL 2	2 10 g	0 5/	0.12	7 0,46	5 0,06	24		nd	nd	nd	9 4,34	nd	2 0,03	2 0,92	1 3,67	5 1,73	2 13,2		1 0,05		1 cut 28	nd	nd	nd	0 13,4	nd	1 0,18	7 25,4	1 5,66	7 20,3	9 10,1	2 52,0	-	0 0,22	106		76	stérite		Ċ	
	, ' J					Ľ, + ,	5 J J	2 (J	0 10		3 37,6	5 45,9		0 100,	5,53	3 84,0	, TO'H	7 10 /	о ,	0.11	0,45	0,06	24		nd	nd	nd	1 4,4C	nd	0,05	. 0,88	3,60	\$ 1,66	5 13,3	,	0,04		103 1	nd	nd	nd	7 13,8,	nd	3 0,26	0 25,1	5,48	0 20,2	2 9,84	4 53,2	,	0,21	107					cipe:-	
	4,94	2				1,-1	1 2,00	1 22	0 2		3 36,8	4 51,1		0 100,	3,25	0 88,2	, oo o	ס א גו ס גו	Ол,	0.00	0,4	0,0	24		n i	nd	nd) 4,67	nd	0,03	0,52	3,36	1,35	7 14,0	,	1 0,05	.0	0 101	n :	nd	nd	4 14,7	nd	0,16	3 21,8	3,23	0 18,9	1 8,05	8 56,1	,	. 0,25	112						
	, + 2,2	2				0,4	י ה זי ה	2 r 2 v,t	0 /		39,3	.4 26,3		0 100	10,5	00,2		7 22 1	04	9 0.2	2 0,6	3 0,1	24		nd	nd	nd	7 3,2	nd	3 0,0	2 1,6	5 4,7	5 3,7	3 10,5	0,0	5 0,0	50	2 8 8 0 - U	n i	nd	nd	,0 8,8	nd	5 0,2	2 32,0	3 9,3	1 23,6	5 19,4	.1 37,2	0,0	5 0,0	2 47						
	1,0 1,0	 - -		7	, v, v		ית ה ו-,ר	2 C 1 J	0 4		39 39,4	38 55,3		,0 100	59 2,11	13 YO,2	10 <u>2,</u> 0	2 C 0	0	6 0.0	0 0,4	1 0,0	24		nd :	nd	nd	0 4,6	nd	6 0,0	9 0,3	7 3,3	0 0,4:	57 15,2	1 -	1 0,0	100,	100	hd :	nd	nd	9 14,8	nd	7 0,1)2 20,8	1 2,2	5 18,8	11 2,5	21 61,3	5 0,0	5 0,0	85		- 90S	Lher			
	2 1,3 ²	7			- U,U		, L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 2	1 1		3 38,2	8 56,9		0 100,	3 2,39	т 95,3	· · · · ·	, c c	0 60	0.0	2 0,40	2 0,02	24		nd i	nd	nd	5 4,78	nd	3 0,02	5 0,38	2 3,2:	2 0,36	0 15,2	0,0:	1 0,03	10 100,	10 100 3	n i	nd	nd	15,3	nd	9 0,12	6 20,5	0 2,42	8 18,3	0 2,16	8 61,7	2 0,05	7 0,03	68		135	zolite			
	, , , , , , , , , , , , , , , , , , ,							1 2 0,0			0 38,2	2 58,8		0 100) 2,2	/ 9/,0	1 ⁺	- 0,0	2	0.0	0,3	0,0	24		n :-	nd	nd	3 4,8	nd		3 0,3	1 3,1	5 0,1	3 15,5		1 0,0	-0 -00,	100	n :	n	nd	3 15,7	nd	0,0	1 20,2	2,2	3 18,1	5 0,6	9 63,4		3 0,0	97		S06-1				
	, u , u	л П	ç	D		,	 2 (лк	0		3 34	sı 51		0 10	3 4,	00 00	, r , r	۰ ۵	- -	0.	9 0,	2 0,	~		-	-	-	5 4,	-	0,	6 O,	6 3,	1 1,	1 13		1 0,	io Fo	40 102		-	-	'0 15	-	1 0,	22	8 4,	.9 18	9,9	16 57		6 0,	1	1 0	54 S 1				
	1 20		' (°	0,			5 2	40 42	7 CV		,59 2	,66 1		0,0 1	02 1	,o/ 4	4 4	21 /	60	10 (40 0	04 0	.4	5 2	Δi	Ъ	Ъ	78 37	Ъ	04 (64	20 4	49 6	,85 6	-	01 (10 177 10	1	5	ď	,56 9	ď	22 (,29 3	14 1	,56 2	14 3	,08 2	-	06 (21	2 b	2 - S1	ch			
	0,97 I	4 40		101	, LU	10 1	7 70 1	, , с, с, с, ,	53		3,44 2	9,45 1		00,0 1	4,65 2	3,32 3	1,02 H	1 87 /	Дл	0.49),55),15 (24		n : d	nd	nd	3,64	nd),12	2,30		5,57	5,83),06	,09 (100 1		nd	nd	.80	nd),56	2,08 3	2,26 1	1,04 2	3,34 3	3,28 1),31 (),36 (128		2-76	romitite			
		, C		26 U			3 78	7 90	0 4 2		1,50 2	1,95 1		00,0 1	2,39 1	3,8/ 4	, i i i i i i i i i i i i i i i i i i i		126	0.56	0,64	0,22	24		nd	nd	nd	2,91	nd	0,10	3,47	5,24	6,78	5,25	0,11 (0,15 0	20,10	nn 4n 1	n i	nd	nd	7,47	nd	0,46 1	9,80 3	7,61 1	3,95 2	2,78 3	7,03 2	0,55 0	0,56 (129						
	0,20 1	ר כר י כר		n 16		0 20	2,20	576	חאב		3,81 2	.8,59 1		00,0 1	5,57 1	- 2,85 4	, т, со н по с	1 5 2 1	0 44	0.49	0,56	0,16 0	24		nd	nd	nd	3,55	nd	0,09	2,44	4,54 .	6,51	6,71	0,09	0,09	00,000	ng 60 1	n i	nd	nd	9,66	nd	0,41 0	3,87 3	3,14 1	2,05 2	3,42 3	3,11 2	0,47 (0,36 (130						
	0,00			1 20	5,20	1 2 2	205	2,07	777		3,44 2	8,70 1		00,0	5,19 1	2,11 4		3 10 V) 44 1	0.50	0,56	0,15	24		nd	nd	nd	3,58	nd	0,11	2,38	4,49	5,59	5,68	0,08	0,09		1 30 1	nd	nd	nd	9,63	nd	0,52	2,90 3	2,67 1	1,50 2	3,43 3	2,76 2	0,44	0,37	131		S				
	L9,10 .	, c		0 10			7 24	6 00	C 2 0		23,72	18,51		00,0	13,79	12,24		ידי א	0 44	0.51	0,56	0,14	24		nd i	nd	nd	3,54	nd	0,06	2,17	4,54	6,86	6,69	0,10	0,04		00 50 1	n i	nd	nd	9,45	nd	0,29	31,87	1,44	21,57	34,49 3	22,57	0,54	0,17	2		06-31				
		, o		0 13	0,00	200,20	7 58	0, JQ	85 0		23,47 2	18,39		0,00.1	14,30 1	12,23 4		12 / 7 /	0 44	0.51	0,56	0,14	24		nd i	nd	nd	3,54	nd	0,07	2,25	4,52	6,84	6,64	0,11	0,03	00,00		nd i	nd	nd	9,43	nd	0,34	32,11 3	1,86 1	21,44 2	34,34 3	22,39 2	0,57	0,10	6						
	10,94	, vo		0 1 2	- J.J.		7 43	л с, с с	76 U		23,77 2	16,94 1		0,00.1	13,41 1	- 1,U'T			0 4 2	0.53	0,58	0,13	24		nd i	nd	nd	3,36	nd	0,07	2,10	4,72	7,14	6,44	0,09	0,06	, color	0000	nd i	nd	nd	8,86	nd	0,33	32,02	10,97	22,15 2	35,47 3	21,48 2	0,49	0,24	10		S				
j	10,04 1	, vo			<u> </u>	127 1	207 8	5.61 0	1 77 1		16,08 2	7,35 1		1 0,00	14,14 1	43,70 4	1, TO 1, T	0 16 A	1 40	0.49 (0,60 (),14 (24		nd i	nd	nd	3,22	nd	0,05 (2,23	4,85	5,64 (6,89	0,10 (0,02 0		0 51 0	n i	nd	nd	3,48	nd	0,23 (3,16 3	1,61 1	2,72 2	12,95 3	2,92 2	0,54 (0,07 (31)-32				
5	14,90 4	, v		80 1	- u,uu	1 28 1	2,00	5 N8 .	1 25 1		98,25 2	.6,05 1		0,00	14,11 1	14,54 4	4 T A	12/ /	1 96 1	0.48	0,64 (),14 (24		nd i	nd	nd	2,92	nd	0,05 .	2,23	5,15 .	6,52	7,02	0,10 ,	0,02 (. + 0,01	ig g1 g	n i	nd	nd	7,69	nd	0,21 (14,55 2	1,59	14,12 2	12,34 3	3,38 2	0,51 .	0,07	39		S				
10,9U	20,10	й 10 10		0 13		0 27	5 70	4 71	0 50		23,98	18,61 :		100,0	10,92	+3,U9 .	10,00 cl	15 00 /	0 44	0.52	0,56	0,11	24		nd i	nd	nd	3,52	nd	0,10	1,71	4,53	7,22	6,77	0,11	0,04	10,01	18 91 1	n i	nd	nd	9,25	nd	0,44	19,27	8,92	21,24	35,82 :	22,52 2	0,58	0,14	14		06-40				
en' 17	21,11		- 0,00	20.02	- +0	0 4 0	7,20 7,20	1 78	0 25		23,45	18,28		100,0	9,82	41,98	14 0.0	18 20	0 44	0.53	0,56	0,10	24		n i	nd	nd	3,55	nd	0,05	1,54	4,56	7,56	6,59	0,12	0,04	.00,00		nd i	nd	nd	9,50	nd	0,23	29,06	8,16	21,72	38,15	22,30	0,64	0,14	15						

5. Discussion

L'intrusion de Samapleu (occurrences E1 et SM) se compose d'unités cumulatives mafiques (gabbro-norite, norite, anorthosite) et ultramafiques (péridotite, pyroxénite et chromitite). L'évolution de ces séquences cumulatives, la pétrographie et la minéralogie des lithologies indiquent l'ordre suivant de mise en place: (i) péridotite et chromitite; (ii) ensemble pyroxénitique, enfin (iii) les séquences mafiques (Gouedji 2014). Les teneurs en Mg# toujours élevées dans les minéraux de la chromitite ainsi que les lithologies riches en olivine confirment que la chromitite et les lithologies riches en olivine se sont formées en premier lors de la mise en place de l'intrusion.

Les valeurs relativement faibles en Cr₂O₃, Na₂O et TiO₂ dans les cristaux de CPX montrent que ces derniers ont conservé des traces d'une origine magmatique primitive (Jagoutz et al., 2007). De plus, leur enrichissement modéré en fer (2 à 6 %) indique une différenciation magmatique (Khan et al., 1989). Les valeurs élevées en MgO dans les minéraux impliqueraient une origine mantellique de l'intrusion. Toutes les caractéristiques chimiques de ces minéraux indiquent que l'intrusion de Samapleu provient d'un magma d'origine mantellique qui se serait formé par cristallisation fractionnée. En outre, les valeurs des teneurs cationiques en Ni (inférieures à 2800 ppm) en rapport avec des teneurs en forstérite (Fo₇₈ et F_{90}) des olivines de l'intrusion caractérisent une intrusion litée (Naldrett, 1989). Ces teneurs nettement inférieures à 3500 ppm (teneur normale de Ni cation dans une olivine mantellique) expliqueraient en partie la présence de sulfure riche en Ni au sein du dyke de Samapleu (Ouattara, 1998 ; Gouedji, 2014 ; Gouedji et al, 2014).

Plusieurs signatures caractéristiques d'un métamorphisme de haut grade ont été recensées dans certains minéraux de l'intrusion de Samapleu : (i) présence de kinks de déformations, d'extinctions onduleuses ; (ii) présence abondante d'aluminium dans des OPX impliquant un métamorphisme de haut grade des roches contenant de tels OPX (Harley, 1998) ; (iii) fortes teneurs en anorthite dans les plagioclases dont l'enrichissement en anorthite traduit un degré de métamorphisme plus élevé (Laird et Albee, 1981 ; Mahmoud et Ghaleb, 2009) ; (iv) spinelles ayant des signatures de spinelles métamorphisées au faciès amphibolite supérieure à granulite avec une présence remarquable d'hercynite et de magnétite chromifère de haut grade de métamorphisme (Suita et Strieder, 1996 ; Barnes et Roeder, 2001).

Dans la région d'étude, le métamorphisme régional granulitique qui a affecté les roches encaissantes (granulites gneissiques, charnockities) de l'intrusion de Samapleu, ainsi que les roches associées sont datées du Libérien (2,8 Ga : Camil, 1981, 1984; Kouamelan et al., 1997; Gouedji, 2014 et Gouedji et al, 2014). Ce métamorphisme régional semble antérieur à la mise en place de l'intrusion de Samapleu.

Gouedji (2014) a mis en évidence un métamorphisme au contact entre l'intrusion et l'encaissant (granulite gneissique). Les conditions déterminées sur le faciès hybride (contact de l'intrusion avec l'encaissant gneissique) sont estimées à $7,5\pm1$ kbar de pression et une température de $850^{\circ}C \pm 100^{\circ}C$. Ces pressions et températures sont certes celles du métamorphisme de contact entre l'intrusion et l'encaissant gneissique mais avec des valeurs d'un métamorphisme granulite. Cela implique une mise en place de l'intrusion à une pression et une température élevées, donc à la base de la croûte terrestre à environ 22 km de profondeur. De plus, ce métamorphisme de contact est daté de 2,09 Ga (âge U/Pb sur rutile; Gouedji, 2014; Gouedji et al., 2014), âge qui correspondrait à celui de la mise en place du dyke de Samapleu.

De ce fait, les caractéristiques de métamorphisme granulitique reconnues par la pétrographie et la chimie des minéraux des lithologies de l'intrusion ne viennent pas du métamorphisme granulite libérien mais des caractéristiques résultant de la mise en place de l'intrusion à la base de la croûte à environ 22 km de profondeur.

Les teneurs en Ca-Tschermark's des CPX des zones E1 et SM de moyenne 4 à 6 % (valeurs d'un complexe stratiforme mis en place en profondeur autour de 5 Kbars) et localement 7 à 12 % (Tab. V et VI) impliquent une mise en place possible de l'intrusion à des pressions de 5 à 10 Kbars (profondeur de 16 km; Mercedes et Juana, 1973), ce qui renforce cette hypothèse. De plus, la composition des amphiboles de l'intrusion (tschermackite, pargasite, hornblende) est interprétée comme des amphiboles magmatiques (Jagoutz et al., 2007) ayant des signatures d'amphiboles formées à moyennehaute pression. Les températures de cristallisation des hornblendes mesurées au thermomètre de Holland et Blundy (1994) sont de 730±40, 763±37 et 783±103°C (Jarrar, 1998). Par conséquent, ces amphiboles se sont probablement formées durant la cristallisation du magma, soit avec l'implication de fluides lors de la mise en place de l'intrusion et/ou de la cristallisation des magmas (Zhao et Zhou, 2006 ; Sanghoon et al., 2012).

De même, le diagramme binaire Al⁴ versus Al⁶ des CPX confirme cette mise en place de l'intrusion dans des conditions d'un métamorphisme granulite et indique une composition basaltique du magma comme l'ont montré Gouedji (2014) et Gouedji et al (2014). La composition du liquide parent de l'intrusion de Samapleu montre une composition de basalte à forte teneur en MgO et faible teneur en Ti.

Par ailleurs, la lizardite (serpentine formée à température inférieure à 300°C; Schwartz et al, 2012) qui est toujours présente dans les péridotites se serait formée ultérieurement soit par altération régressive de l'olivine ou par rétromorphose lors de l'injection de fluides tardifs.

En considérant les résultats précédents, l'intrusion de Samapleu serait contemporaine et de la mise en place des basaltes de plateau océanique en rapport avec l'activité d'un panache ou à la convergence tectonique éburnéenne entre la croûte birimienne et la croûte archéenne entre 2,1 et 2,05 Ga (Abouchami et al., 1990 ; Lompo, 2009-2010).

Par ailleurs, les caractéristiques métamorphiques de faciès granulites de l'intrusion de Samapleu suggèrent une relation possible avec l'événement métamorphique éburnéen de haut grade décrit au sud de la faille Man-Danané par Pitra et al. (2010). Cependant aucune trace de métamorphisme de haut grade éburnéen n'est encore reconnu dans le domaine archéen au nord de la faille Man-Danané (où se situe l'intrusion de Samapleu) qui est considéré comme stable.

6. Conclusion

L'intrusion de Samapleu du complexe lité Yacouba se compose d'unités cumulatives, mafique (gabbro-norite, norite, anorthosite) et ultramafique (péridotite, pyroxénite et chromitite). L'ordre de mise en place des lithologies en fonction des caractéristiques pétrographiques et minéralogiques est le suivant : péridotite et chromitite en premier, ensemble

pyroxénitique et séquences mafiques.

La cristallochimie des minéraux comme l'olivine, l'OPX, le CPX et l'amphibole dans les lithologies des occurrences de l'Extension 1 et de la zone principale montrent que l'intrusion se serait formée à partir d'un magma mantellique de composition basaltique par cristallisation fractionnée. Elle se caractérise par des valeurs relativement faibles en Cr_2O_3 , Na_2O et TiO₂, un enrichissement modéré en fer (2 à 6 %) dans des CPX et des valeurs élevées en MgO des minéraux.

Les lithologies de cette intrusion ont les caractéristiques d'un métamorphisme de haut grade avec notamment des kinks de déformations, des extinctions onduleuses, l'abondance d'aluminium dans les OPX, de fortes teneurs en anorthite dans les espèces de plagioclase, la présence d'hercynite et de magnétite chromifère (spinelles du métamorphisme de haut grade). Ces caractéristiques résultent d'une mise en place de l'intrusion à une pression P de 7.5 \pm 1 Kbar et une température T de $850^{\circ}C \pm 100^{\circ}C$, donc à la base de la croûte à environ 22 km de profondeur. Les teneurs en Al⁴ et Al⁶ et celles élevées en Ca-Tschermark's des CPX ainsi que les espèces d'amphiboles présentes confirment une mise en place de l'intrusion à haute température et haute pression. La présence notable d'amphiboles traduirait l'implication de fluides lors de la mise en place de l'intrusion et/ou de la cristallisation des magmas.

Daté de 2,09 Ga (âge U/Pb sur rutile), le dyke de Samapleu serait contemporain et lié à la mise en place des basaltes de plateau océanique en rapport avec l'activité d'un panache ou à la convergence tectonique éburnéenne entre la croûte birimienne et la croûte archéenne entre 2,1 et 2,05 Ga.

Remerciements

Nous remercions la société Sama Nickel-CI qui a financé ce travail. Les auteurs remercient également la SODEMI, le laboratoire Chrono-Environnement de l'Université de Franche-Comté (France), l'Université de Lausanne (Suisse), l'IST de Grenoble, le laboratoire mixte du BRGM - CNRS de l'Université d'Orléans (France) qui ont l'acquisition des données et la réalisation de ce travail.

Références

Abouchami, W., Boher, M., Michard, A., Albarede, F., 1990. A major 2.1 Ga old event of mafic magmatism in West Africa: an early stage of crustal accretion. *Journal of Geophysical Research*, 95: 17605-17629.

Aoki, K.,-I., Kushiro I., 1968. Some Clinopyroxenes from Ultramafic Inclusions in Dreiser Weiher. Eifel. *Contributions to Mineralogy and Petrology*, 18 : 326-337.

Auzende, A., 2003. Evolution des microstructures des serpentinites en contexte convergent : effet du degré de métamorphisme et de la déformation. Thèse Doctorat, Université Joseph Fourier. Grenoble : 264 p.

Auzende, A., Daniel, I., Reynard, B., Lemaire, C., Guyot, F., 2004. High-pressure behavior of serpentine minerals: a Raman spectroscopic study. *Physics and Chemistry of Minerals*, 31 (5): 269-277.

Barnes, S.,-J., Roeder L., P., 2001. The range of spinel

compositions in terrestrial mafic and ultramafic rocks. *Journal of Petrology*. 42: 2279 - 2302.

Berger, J., Diot, H., Khalidou, L., Ohnenstetter, D., Féménias, O., Pivin, M., Demaiffe, D., Bernard, A., Charlier, B., 2013. Petrogenesis of Archean PGM-bearing chromitites and associated ultramafic–mafic–anorthositic rocks from the Guelb el Azib layered complex (West African craton. Mauritania). *Precambrian Research*, 224 : 612-628.

Camil, J., 1981. Un exemple de métamorphisme prograde de la base du faciès des amphibolites au faciès des granulites dans la région de Man (Ouest de la Côte d'Ivoire). *Comptes Rendus de l'Académie des Sciences*, Paris. 93 : 513-518.

Camil, J., 1984. Pétrographie, chronologie des ensembles granulitiques archéens et formations associées de la région de Man (Côte d'Ivoire). Implication pour l'histoire géologique du Craton Ouest-Africain. Thèse Doctorat d'Etat ès Sciences, Université d'Abidjan : 306 p.

Coulibaly, Y., Kouaho, B., Gnanzou, A., Allialy, M.E., Djro, S.C., 2012. Contexte géologique de la minéralisation aurifère du Prospect de Bobosso (région de Dabakala, Centre-Nord de la Côte d'Ivoire). *Journal de la Recherche Scientifique de l'Université de Lomé*, 14 (2) : 149-162.

Deer, W., A., Howie, R., A., Zussman, J., 1992. An introduction to the rock forming minerals; Longman group limited. Distributed in the U.S.A by Halsted Press. a Division of John Wiley Sons. Inc. 2nd edition, New York: 696 p.

Gouedji, G., E., F., 2014. Les séquences mafiques-ultramafiques de Samapleu et leurs minéralisations en Ni-Cu-EGP: un dyke du complexe lité Yacouba ; craton archéen de Man, Ouest Côte d'Ivoire. Thèse Doctorat Université Franche Comté-Besançon / Université Felix Houphouët Boigny d'Abidjan : 380 p.

Gouedji, F., Picard, C., Coulibaly, Y., Audet, M.-A., Auge, T., Goncalves, P., Paquette, J.-L., Ouattara, N., 2014. The Samapleu mafic-ultramafic intrusion and its Ni-Cu-PGE mineralization: an Eburnean (2.09 Ga) feeder dyke to the Yacouba Layered Complex (Man Archean craton, Western Ivory Coast). *Bulletin de la Société Géologique de France*. 185 (6): 393-411.

Groppo, C., Rinaudo, C., Cairo, S., Gastaldi, D., Compagnoni, R., 2006. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. *European Journal of Mineralogy*. 18: 319-329.

Harley, S., L., 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In : Treloar, P., J., & O'Brien, P., J., (eds) What Drives Metamorphism and Metamorphic Reactions ? *Geological Society, Special Publication*, London: 138: 81-107.

Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. *Contributions to Mineralogy and Petrology*, 116 (4): 433-47.

Jagoutz, O., Müntener, O., Ulmer, P., Pettke, T., Burg, J.,-P., Dawood, H., Hussain, S., 2007. Petrology and Mineral Chemistry of Lower Crustal Intrusions: The Chilas Complex. Kohistan (NW Pakistan). *Journal of Petrology*, 48 (10): 1895-1953.

Jarrar, G., 1998. Mineral chemistry in dioritic hornblendites from Wadi Araba, southwest Jordan. *Journal of African Earth Sciences*, 26 (1): 285-295.

Khan, M., A., Jan, M., Q., Windley, B., F., Tarney, J., Thirlwall, M., F., 1989. The Chilas mafic-ultramafic igneous complex; the root of the Kohistan island arc in the Himalaya of northern Pakistan. In: Malinconico. L. L., Jr and Lillie. R. J. (Eds). Tectonics of the Western Himalayas. *Geological Society of America. Special Papers*, 232 : 75-94.

Kouamelan, A.N., 1996. Géochronologie et géochimie des formations archéennes et protérozoïques de la dorsale de Man en Côte d'Ivoire. Implication pour la transition archéenprotérozoïque. Thèse de doctorat Université Géosciences Rennes1 France : 167 p.

Kouamelan,A.N.,Delor,C.,Peucat,J.J.,1997.Geochronological evidence for reworking of Archaean terrains during the Early Proterozoic (2.1 Ga) in the western Côte d'Ivoire (Man Rise - West African Craton). *Precambrian Research*, 86: 177-199.

Kouamelan, A.N., Djro, S.C., Allialy, M.E., Paquette, J.-L., Peucat, J.-J., 2015. The oldest rock of Ivory Coast. *Journal of African Earth Sciences*, 103: 65-70.

Kouamelan, A.N., Kouassi, S.A., Djro, S.C., Paquette, J.-L., Peucat, J.-J., 2017. The Logoualé Band: A large Archean crustal block in the Kenema-Man domain (Man-Leo rise, West African Craton) remobilized during Eburnean orogeny (2.05 Ga). *Journal of African Earth Sciences*, In press. doi:10.1016/j. jafrearsci.2017.09.004.

Laird, J., Albee, A., L., 1981. Pressure, Temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. *American Journal of Science*, 281: 127-175.

Leake B., E., Woolley, A., R., birch, W., D., Burke, E., A-J., Ferraris G., Grice, J., D., Hawthorne, F., C., Kisch, H., J., Krivovichev, V., G., Schumacher, J., C., Stephenson, N., C., N., Whittaker, E., J. W., 2004. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's amphibole nomenclature. *American Mineralogist*, 89: 883-887.

Lemaire, C., 2000. Application des spectroscopies vibrationnelles à la détection d'amiante dans les matériaux et à l'étude des serpentines. Thèse Doctorat Université de Paris 7: 157 p.

Lompo, M., 2009. Geodynamic evolution of the 2.25-2.0 Ga Palaeoproterozoic magmatic rocks in the Man-Leo shield of the West African craton. A model of subsidence of an oceanic plateau. *Geological Society, Special Publications,* London, 323: 231-254.

Lompo, M., 2010. Paleoproterozoic structural evolution of the Man-Leo shield (West Africa). Key structures for vertical to transcurrent tectonics. *Journal of African Earth Sciences*, 58: 19-36.

Mahmoud, A., H., Ghaleb, H., J., 2009. Petrology and geochemistry of the metasediments of the Janub metamorphic suite. Southern Jordan: Implications for geothermobarometry and Economic Potential. *Jordan Journal of Earth and Environmental Sciences*, 2 (1): 7-17.

Mercedes, M., Juana, S., 1973. Clinopyroxenes as Geobarometric Indicators in Mafic and Uhramafic Rocks from Canary Islands. Department of Petrology and Geochemistry. University of Madrid. *Contributions to Mineralogy and Petrology*, 44: 139-147.

Morimoto, N., 1989. Nomenclature of pyroxenes. *Canadian Mineralogist*, 27: 143-156.

Naldrett, A., J., 1989. Magmatic sulfide deposits. Oxford University Press (Edit.), Oxford. *Monographs on Geology and Geophysics*, 14: 186 p.

Ouattara, N., 1998. Pétrologie, géochimie et métallogénie des sulfures et des éléments du groupe du platine des ultrabasites de Côte d'Ivoire : Signification géodynamique et implications sur les processus de croissance crustale à l'Archéen et au Paléoprotérozoïque. Thèse de doctorat Université d'Orléans, 199 p.

Pitra, P., Kouamelan, A.N., Ballevre, M., Peucat, J.J., 2010. Palaeoproterozoic high pressure granulite overprint of the Archean continental crust: evidence for homogeneous crustal thickening (Man Rise, Ivory Coast). *Journal of Metamorphic Geology*, 28: 41-58.

Roubault, M., Fabries, J., Touret, A., Weisbrod, 1963. Détermination des minéraux des roches au microscope polarisant. Edition Lamarre-Poinat 4. Rue Antoine Dubois. Paris-6^e: 368p

Sanghoon, K., Sung, W., K., Santosh, M., 2012. Multiple generations of mafic–ultramafic rocks from the Hongseong suture zone. Western South Korea: Implications for the geodynamic evolution of NE Asia. *Lithos*, 160-161 : 68-83.

Schwartz, S., Guillot, S., Tricart, P., Bernet, M., Jourdan, S., Dumont, T., Montagnac, G., 2012. Source tracing of detrital serpentinite in the Oligocene molasse deposits from the western Alps (Barrême basin): implications for relief formation in the internal zone. Geological Magazine, Cambridge University Press (CUP): 1-16.

Schwartz, S., Guillot S., Reynard B., Lafay R., Debret B., Nicollet C., Lanari P., Auzende A., 2012. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. *Lithos*, 178 : 197-210.

Seyler, M., 2017. Cahier de Minéralogie n°4 : Compositions et nomenclature des amphiboles. *Bulletin de Liaison de la Société Française de Minéralogie et Cristallographie*, 19 : 31-35.

Suita, M., T., F., Strieder, A., J., 1996. Cr-Spinels from Brazilian Mafic-Ultramafic Complexes: Metamorphic Modifications. *International Geology Review*, 38 : 245-267.

Thieblemont, D., Goujou, J.C., Egal, E., Cocherie, A., Delor, C., Lafon, J.M., Fanning, C.M., 2004. Archaean evolution of the Leo Rise and its Eburnean reworking. *Journal of African Earth Sciences*, 39: 97-104.

Zhao, J., H., Zhou, M., F., 2006. Neoproterozoic mafic intrusions in the Panzhihua district. SW China: implications for interaction between subducted slab and mantle wedge. *Geochimica et Cosmochimica Acta*, 70 : A740-A1740.