Mesure des concentrations d'ammoniac (NH3) dans l'environnement urbain de la décharge d'Akouédo (Abidjan): Evaluation des performances des capteurs passifs
Abstract
Measurement of ammonia (NH3) concentrations in the urban environment of the Akouédo Landfill (Abidjan): Performance evaluation of passive samplers
This study, carried out within the framework of the European DACCIWA project (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa provided the first-ever measurements of atmospheric ammonia (NH3) concentrations near the Akouédo landfill (Abidjan, Côte d’Ivoire). Simultaneous passive sampling was conducted from February 2015 to March 2017 using INDAAF sensors and ALPHA badges. The analysis of the samples by ion chromatography made it possible to evaluate the discrepancies between these two types of sensors and to study the temporal variation of the concentrations in this polluted environment. A strong correlation (r = 0.90, R² = 0.82) was observed between the two sensors, indicating similar temporal variations in concentration. Moderate discrepancies between these sensors were observed (MAE = 11.55 ppb; RMSE = 13.16 ppb), especially during pollution peaks. The average bias of -28.3% suggests that the ALPHA badge tends to overestimate concentrations compared to the INDAAF sensor. The two sensors exhibited similar temporal dynamics, although concentrations measured by ALPHA (16.4–73.2 ppb, mean = 40.8 ppb) were consistently higher than those from INDAAF (8.0–59.0 ppb, mean = 29.2 ppb). The observed monthly and seasonal variability is characterized by a peak in concentrations in June, during the rainy season. The strong concordance between the measurements from the two passive samplers makes them a robust and reliable solution for characterizing the variability of ammonia pollution in a tropical environment.
Keywords: Ammonia, Abidjan, Akouédo landfill, INDAAF passive sampler, Badge ALPHA.
Full Text:
PDF (Français)References
FAO-IFA, Global estimates of gaseous emissions of NH₃, NO and N₂O from agricultural land. Rome: FAO (2001).
https://www.fertilizer.org/wp-content/uploads/2023/01/2001_FAO_IFA_gaseousemissionsNH3.pdf (Consulté le 30/05/2025).
S. Bittman, J.R. Brook, A. Bleeker, T.W. Bruulsema, Air Quality, Health Effects and Management of Ammonia Emissions from Fertilizers, in: E. Taylor, A. McMillan (Eds.), Air Quality Management, Springer Netherlands, Dordrecht (2014) 261–277.
https://doi.org/10.1007/978-94-007-7557-2_12
W. Hodan, W. Barnard, Evaluating the Contribution of PM2.5 Precursor Gases and Re-entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions (2004).
https://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf
L.D. Nghiem, F.I. Hai, A. Listowski, Water reclamation and nitrogen extraction from municipal solid waste landfill leachate, Desalination and Water Treatment 57 (2016) 29220–29227. https://doi.org/10.1080/19443994.2016.1169949
Eawag, Global waste challenge, Situation in developping countries (2008). https://www.ecopost.co.ke/assets/pdf/global_waste_challenge.pdf (Consulté le 30/05/2025).
M.D. Vaverková, Landfill Impacts on the Environment—Review, Geosciences 9 (2019) 431.
https://doi.org/10.3390/geosciences9100431 . 1-16
B.W. Stamps, C.N. Lyles, J.M. Suflita, J.R. Masoner, I.M. Cozzarelli, D.W. Kolpin, B.S. Stevenson, Municipal Solid Waste Landfills Harbor Distinct Microbiomes, Frontiers in Microbio-logy 7 (2016) 1-11.
https://doi.org/10.3389/fmicb.2016.00534
M. Cyril Kouadio, Caracterisation physico-chimique et energetique de la decharge d’akouedo, Thesis, Université Félix Houphouët-Boigny, Côte d’Ivoire (2020).
https://theses.hal.science/tel-03799400 (Consulté le 30/05/2025).
O.A. Adjiri, C.K. Mafou, P.K. Konan, Impact of Akouedo landfill (Abidjan - Côte d’Ivoire) on the populations: socio-economic and environmental study, International Journal of Innovation and Applied Studies 13 (2015) 979–989.
A.O. Adjiri, A. Koudou, G. Soro, J. Biemi, Étude du potentiel de valorisation énergétique du biogaz de la décharge d’Akouédo (Abidjan, Côte d’Ivoire), Environnement, Ingénierie & Développement 77 (2018) 3–10. https://doi.org/10.4267/dechets-sciences-techniques.3784
K.M. N’Goran, K.M. Yao, N.L.B. Kouassi, A. Trokourey, Phosphorus and nitrogen speciation in waters and sediments highly contaminated by an illicit urban landfill: The Akouedo landfill, Côte d’Ivoire, Regional Studies in Marine Science 31 (2019) 100805. https://doi.org/10.1016/j.rsma.2019.100805
O.A. Adjiri, D.L. Gone, I.K. Kouame, B. Kamagate, J. Biemi, Caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan-Côte d’Ivoire, International Journal of Biological and Chemical Sciences 2 (2008) 979-989.
https://doi.org/10.4314/ijbcs.v2i4.39768
H. M. Obe, B.A. Nicolas, Impacts de la Décharge Publique d’Akouédo sur le Cadre de Vie et la Santé de la Population Riveraine, European Scientific Journal, ESJ 15 (2019) 20. https://doi.org/10.19044/esj.2019.v15n12p20
Word Bank, World Bank- Côte d’Ivoire, la banque mondiale -BIRD-IDA (2016).
http://www.banquemondiale.org/fr/country/cotedivoire (Consulté le 30/05/2025).
J. Bahino, V. Yoboué, C. Galy-Lacaux, M. Adon, A. Akpo, S. Keita, C. Liousse, E. Gardrat, C. Chiron, M. Ossohou, S. Gnamien, J. Djossou, A pilot study of gaseous pollutants’ measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Côte d’Ivoire: contribution to an overview of gaseous pollution in African cities, Atmospheric Chemistry and Physics 18 (2018) 5173–5198.
https://doi.org/10.5194/acp-18-5173-2018
M. Ossohou, J.E. Hickman, L. Clarisse, P.-F. Coheur, M. Van Damme, M. Adon, V. Yoboué, E. Gardrat, M.D. Alvès, C. Galy-Lacaux, Trends and seasonal variability in ammonia across major biomes in western and central Africa inferred from long-term series of ground-based and satellite measu-rements, Atmospheric Chemistry and Physics 23 (2023) 9473–9494. https://doi.org/10.5194/acp-23-9473-2023
J. Bahino, Analyse de la qualité de l’air dans les zones urbaines en Afrique : caractérisation de la pollution gazeuse des espèces chimiques NO2, SO2, HNO3, NH3 et O3 à Abidjan et Cotonou, Thèse, Université Félix Houphouët-Boigny, Côte d’Ivoire (2018).
https://hal.archives-ouvertes.fr/tel-02202221 (Consulté le 30/05/2025).
N. Soro, T. Lasm, B.H. Kouadio, G. Soro, K.E. Ahoussi, Variabilité du régime pluviométrique du Sud de la Côte d’Ivoire et son impact sur l’alimentation de la nappe d’Abidjan, (2006). http://documents.irevues.inist.fr/handle/2042/30375 (Consulté de 30/05/2025).
K. E. Ahoussi, N. Soro, G. Soro, T. Lasm, MS Oga et S. Zadé, Pollution des eaux souterraines dans les plus grandes villes d'Afrique : cas de la ville d'Abidjan (Côte d'Ivoire), Revue européenne de recherche scientifique, 20(2) (2008) 302-316.
http://dx.doi.org/10.1109/9.402235
L. Konate, B.H. Kouadio, B.K. Djè, .E. Ake, V.H.N. Bi, L. Gnagne, E.K. Kouame, J. Biemi, Caractérisation des pluies journalières intenses et récurrences des inondations: apport des totaux glissants trois (3) jours à la détermination d’une quantité seuil d’inondation (District d’Abidjan au Sud-Est de la Côte d’Ivoire), International Journal of Innovation and Applied Studies 17(3) (2016) 990-1003.
Y.S. Tang, J.N. Cape, M.A. Sutton, Development and Types of Passive Samplers for Monitoring Atmospheric NO2 and NH3 Concentrations, The Scientific World Journal 1 (2001) 513-529.
https://doi.org/10.1100/tsw.2001.82
M.A. Sutton, Y.S. Tang, B. Miners, D. Fowler, A New Diffusion Denuder System for Long-Term, Regional Monitoring of Atmospheric Ammonia and Ammonium, Water, Air, & Soil Pollution: Focus 1 (2001) 145–156. https://doi.org/10.1023/A:1013138601753
M.A. Puchalski, M.E. Sather, J.T. Walker, C.M.B. Lehmann, D.A. Gay, J. Mathew, W.P. Robarge, Passive ammonia monitoring in the United States: Comparing three different sampling devices, Journal of Environmental Monitoring 13 (2011) 3156-3167. https://doi.org/10.1039/c1em10553a
M. Adon, C. Galy-Lacaux, V. Yoboue, C. Delon, J.P. Lacaux, P. Castera, E. Gardrat, J. Pienaar, H. Al Ourabi, D. Laouali, B. Diop, L. Sigha-Nkamdjou, A. Akpo, J.P. Tathy, F. Lavenu, E. Mougin, Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos-pheric Chemistry and Physics 10 (2010) 7467–7487.
https://doi.org/10.5194/acp-10-7467-2010
M. Ferm, A Sensitive Diffusional Sampler, Swedish Environmental Research Institute, Sweden (1991). https://books.google.fr/books?id=cmZgMgAACAAJ
M. Adon, C. Galy-Lacaux, C. Delon, V. Yoboue, F. Solmon, A.T. Kaptue Tchuente, Dry deposition of nitrogen compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferen-tial method, Atmospheric Chemistry and Physics 13 (2013) 11351–11374. https://doi.org/10.5194/acp-13-11351-2013
W.M. WMO-GAW, Report on passive samplers for atmospheric chemistry measurements and their role in GAW /Rapport GAW n° 122 (1998) 1-31.
C. Galy-Lacaux, A.I. Modi, Precipita-tion chemistry in the Sahelian savanna of Niger, Africa, Journal of Atmos-pheric Chemistry 30 (1998) 319–343. https://doi.org/10.1023/A:1006027730377
R.E. Hodgkins, C.M. Grzywacz, R.L. Garrell, An improved ion chromate-graphy method for analysis of acetic and formic acid vapours, E-Preserva-tion Science (e-PS) 8 (2011) 74–80.
D. Laouali, C. Galy-Lacaux, B. Diop, C. Delon, D. Orange, J.P. Lacaux, A. Akpo, F. Lavenu, E. Gardrat, P. Castera, Long term monitoring of the chemical composition of precipitation and wet deposition fluxes over three Sahelian savannas, Atmospheric Envi-ronment 50 (2012) 314–327.
https://doi.org/10.1016/j.atmosenv.2011.12.004
R. Duvall, A. Clements, G. Hagler, A. Kamal, Vasu Kilaru, L. Goodman, S. Frederick, K. Johnson Barkjohn, I. VonWald, D. Greene, T. Dye, Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications (2021), Washington, DC, EPA/600/R-20/280. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM (Consulté le 12/04/2025).
K. Aula, E. Lagerspetz, P. Nurmi, S. Tarkoma, Evaluation of Low-cost Air Quality Sensor Calibration Models, Association Computing Machinery Transactions on Sensor Networks 18(4) (2022) 1-32.
https://doi.org/10.1145/3512889
A. Datta, A. Saha, M.L. Zamora, C. Buehler, L. Hao, F. Xiong, D.R. Gentner, K. Koehler, Statistical field calibration of a low-cost PM2.5 monitoring network in Baltimore, Atmospheric Environment 242 (2020) 117761.
https://doi.org/10.1016/j.atmosenv.2020. 117761
P. Gupta, P. Doraiswamy, J. Reddy, P. Balyan, S. Dey, R. Chartier, A. Khan, K. Riter, B. Feenstra, R.C. Levy, N.N.M. Tran, O. Pikelnaya, K. Selvaraj, T. Ganguly, K. Ganesan, Low-Cost Air Quality Sensor Evaluation and Calibration in Contras-ting Aerosol Environments, Atmos-pheric Measurement Techniques Discussions [preprint] (2022).
https://doi.org/10.5194/amt-2022-140
H. Khreis, J. Johnson, K. Jack, B. Dadashova, E.S. Park, Evaluating the Performance of Low-Cost Air Quality Monitors in Dallas, Texas, Interna-tional Journal of Environmental Research and Public Health 19 (2022) 1647. https://doi.org/10.3390/ijerph19031647
M.A. Sutton, U. Dragosits, Y.S. Tang, D. Fowler, Ammonia emissions from non-agricultural sources in the UK, Atmospheric Environmental 34 (2000) 855–869.
https://doi.org/10.1016/S1352-2310(99)00362-3
S.N. Behera, M. Sharma, V.P. Aneja, R. Balasubramanian, Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. Res. 20 (2013) 8092–8131. https://doi.org/10.1007/s11356-013-2051-9
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Julien BAHINO, Money Ossohou, Madina Doumbia, Sylvain Gnamien, Sekou Keita, Marcellin Adon, Adama Bakayoko, Mohamed Diaby, Evelyne Toure, Véronique Yoboué