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Abstract:

In this paper, we use a particular adaptive moving mesh finite volume method to solve
Burger-problem with a small diffusion term. It is well known that the solution of such problem
is a wave that spreads and develops a steep front. The main difficulty with the numerical
solution of this problem is the computation of this propagating steep front. The purpose in this
paper is to point out the efficiency of the use of adaptive moving mesh finite volume method
through some comparisons between exact and numerical solutions of this particular problem.

Keywords: Adaptive mesh generation; High-order finite volume method; Hyperbolic
conservation laws problems.

1. Introduction

According to Huang and improve their efficiency and robustness

Russell [1]: "moving mesh methods as a
whole are still in a relatively early phase of
development. Many of them are at the
experimental stage, and almost all require
further mathematical justification.
Rigorous analysis of moving mesh
methods for solving time dependent PDEs
(Partial Differential Equations) has only

been carried out for some very simple

model problems to date, and more ways to
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will no doubt be developed". In this work,
we want to improve the method developed
by Tang and Tang [2] to solve a Burgers
problem with a small diffusion term. There
are several other adaptive moving mesh
finite volume methods described in [3-11].
Some of them [2, 5, 12, 13] were used to
solve some examples of Burger problems

with various initial conditions.
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The particularity in the present work is about the
small diffusion term and the initial conditions.

The two elements which are the diffusion term
and the initial condition make it difficult to
compute with a classic numerical method based
only on domain meshing [1]. Therefore, this form
of Burger problem is a good example to apply an
adaptive moving mesh method in order to point
out its efficiency. The goal of this new technique
is to solve this kind of problems with more
accuracy using a much lower number of grid

points than needed for classical methods.

2. Quick overview of the adaptive moving mesh

finite volume method

The considered problem is to find the
U (x,t) on
Q =]0,1[x]0, 1], such as [14, 15]:

oU(x,t) | Of(U(x,t)) 02U(xt)
ot N x5 oxz

unknown function

(1

U(x; 0) = Burgers_exact(x; 0)
U(0; t) = Burgers_exact(0; t)
U(1; t) = Burgers_exact(1; t)
with € = 0.001, the flux function f and the exact

solution given respectively by:
fUG ) =U2(x, 1) (2)

and,

0.177+0.513 +7-
Burgers_exact(x; t) = —————2

3)

r+1+1;
where
r(x; t) = exp(—x + 0.5— 4.95t)/(20¢)
ry(x; t) = exp(—x + 0.5 —0.75t)/(4¢)
r3(x; t) = exp(—x + 0.375)/(2¢)

The problem mentioned above has been solved
in [15] using an adaptive moving mesh finite
differences method. Another slightly different
form by its initial condition has also been solved
in [5]. This problem resolution by the chosen
adaptive moving mesh finite volume method
includes two phases that are mesh generation on

the domain and the PDE discretization.
3. Methodology

3.1. Moving mesh generation

At the initial time (t = 0) the space
interval is subdivided into elementary interval
according to the principle of the finite volume

method [16, 17]:

]xi—%’ xi+%[ , L=LN

The nodes resulting from this subdivision form a
vector X. For the rest of the time the components
of X must change position according to the values
of the gradient of solution U. The link between the
movement of the nodes and the solution is
established by a monitor function w. This
movement of nodes is such as X is considered as
follow:

X: [0; 1] — [a; b]

§— x($)

is solution of Eq. (4), the following mesh-

redistribution problem:

X(0)=a “4)
X)) = b
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There are variant forms of the mesh-redistribution
equation, as can be seen in [10, 18]. There are also
several possible choices for the monitor
function [1, 4]. The one we used is defined by:
wU) =1+ allU,ll3 (5)
with a a positive parameter.

Eq. (5) is approximated for each x; and at every

moment t™ by:

n n \2
WU = \/ 1+a (—”Lﬂhn”l-l) (6)
where
= = (.X'_ 1 + Xl 1)
and
n_1(.n _ .n __an
hi' = 2 (xl+ xl+%) + (xl+l xl—l> T
2 (x” 1 —x" ) (7)
2 i—z i—%

According to Tang et Tang [2], the mesh-
redistribution equation can be solved by Eq. (8) or
by another scheme known as the Gauss-Seidel
iteration [2, 3] or also by scheme used by

Mackenzie [5].

Xﬁﬁ}z P Xi i+3/2 T (1- o, _‘P?)Xﬁl +
2
oL ¢ 1/2 (8)
where
S o w(U)
NYSE

: 1
with At a value such as max(¢}') < >

In order to obtain better results, it is necessary to
perform several iterations of the system formed

by Egs. (8) and (9). Here we have done

15 iterations and taken At = (h?)2At, where At is

the step of time interval.

n+1 xﬁf% - X:l_% n 1 n
Ui = XL _ entt Ui Tt X ((CU)
i+ i3 i+ 1—5
cvy) ©)
2
with
C. C. 1
comr, = — (U"'J{ +U ) 2 (U,”'t +
L 2 E 2 l+E
;) (10)
2
— LN ontl
Ci+% - xi+% xi+;
Ui = Ul + PP — xP) (11)
2 2
and
4
Uitl = Ulty — Pfa (i — xin+l) (12)
2 2

Where 1) is a slope limiter that can be defined in
several ways [19, 20]. We use Eq. (9) to update
the solution on new grids after each change of
nodes position. It allows to take into account the
conservation of the total mass of the solution on
each interval I; [2]. At every moment t™ we use
the new positions of the nodes to define
elementary volumes V;* on which the PDE of the
problem will be integrated:

Vin = ]xn 1 ,X::_l[ X [tn ,tTl+1] (13)
2 2

-1
More details on the moving mesh generation are

given in [2].

3.2. PDE Discretization
The second step of the problem (Eq. (1))

resolution by the chosen method is to establish the
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numerical scheme of this method that will
compute the different values U[* of the unknown
function U at node x; and time t". The
establishment of this scheme begins with a

mandatory rewrite of the problem PDE in the

form:
UGt | afw) 0 ”
at ax (14)
With
- F) :
f) = f)-e=20 (15)

Then, this new form is integrated on each

elementary volume V;" as follows:

et X 1ou(xt) et Xl 9(F ()

Jon S P dxdt + fon [ "7 S5 dde
2 2

=0 (16)

We get:

At Kl n+1 hit (Fid n
T J. 2U (" ) dx — ok /. 2U(x, t")dx +
i i— i i-L

=2

tn+1

I <f(U(xl.+%, t)) - f(U(xl._%, t))) dt =0 (17)

In Eq. (17), we have the average values of U™*1
and U™ on ]x?_% ’x:;%['

These values are assigned to U*** and U

X, 1
Uin+1 — 1 fx 1+1§ U(x, tn+1)dx

h?+1
=3
and
1 (M
UL-” = —nf ZU(x,t”)dx
h’i X, 1

-z

We finally get the search numerical scheme
known as high order finite volume method

scheme:

hi' T n— pn+
Uptt = S5 U - FlUML,u™t) -
i h?+1 i h{”’l i+1' i 1

2 2
F (Ui"_'; UZ’_’I)) (18)
2 2

Where

F(U"’_ U"’+) _1 tn+1f<U(x , t))dt (19)
i+%' i+% T Jth i+’

And

Flursumt) =115 F(u dt (20
[EETR NN ; tn f (xi_%lt) t ( )

Eqgs. (19) and (20) are respectively the average

value of the flow that has passed through the xﬁl

2

and x?_l for the period T = t™*1 — t™ . They are
2

approached by patterns that enable the

convergence of Eq. (18).

U™T and U™} are defined by Egs. (11) and

2 2

(12).
U™, and U™} are defined in a similar way.
Finally, to get better accuracy in relation to the

time, Eq. (18) is replaced by a second-order

Runge-Kutta scheme:

Uf = UM+ tLUM)
{ (21)

Uptt = S (UP + U+ TTU))

Where
(U™ = — 1 Flur,u™t ) - Flu™g, u™t
! A+ i+ its i3 i3

The convergence of this method to solve this

Burgers problem was guaranteed by the error

evolution as highlighted in figures 5, 6 and 7.
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4. Results and discussion

Figures 1 and 2 give respectively the exact
solution for t € [0, 1] and its sections at times
t=0,t=02, t=04,t=0.6,t=08and t =1 (in

a chosen unit).

Figures 3 to 5 show the numerical solution
of the problem on (), its sections at indicated times
and the mesh trajectories of 100 nodes,
respectively. The parameters of the method which
it used to calculate the numerical solution are
given by: NS.st = 600, NT.st = 1500 and
CPU.t = 36.4, where NS.st and NT.st are the
number of nodes in () space interval and time
interval, respectively. CPU.t is the period of the

calculation.

The figure 6 helps to locate the position of
the steep part of the solution over time and in
particular the area where the solution passes from
2 steep parts to a much more steep parts. Figure 6

shows comparison between the numerical and
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exact solutions. On the left side, U,, and U,,,,, are
the exact and numerical solutions, respectively.
On the right side, we have the graphical
representation of the gap between the numerical
and exact solutions for (NS.st, NT.st) = (100,
300).

In table 1, E; and E, are defined as follow:
E, = ”Uex - Unum”oo

And

E, = ”Uex - Unum”2~

From the figures 5 and 6, we note that:

li _ _
(Ax,Atl)n—l> (0,0) I Uex = Unum [ 2 =0

and therefore, U, gets closer to U,,.

In figures 7 to 9, we have on the left, comparison
between U,, and U, and, on the right, we have
the representation of the gap between U,, and
U,um from the (NS.st, NT.st) = (100, 300), (NS.st,
NT.st) = (300, 500) and (NS.st, NT.st) = (600,
1500). We can notice the progressive decrease of

this gap.

Table 1
Error between the numerical solution and the exact solution.
Error/Times t=0.2 t=04 t=0.6 t=0.8 t=1
E; 4,103 4,107* 9.1.1073 9.4.1073 9.4.1073

E, 9.9.107% 1.1.10°%

2.1072 2.1.107% 2.1.1072
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Fig. 1. Exact solution for t € [0, 1].

t=0; t=0.2; t=0.4; t=0.6; t=0.8; t=1

U —d A —k A
0 0.2 0.4 0.6 08 1

Fig. 2. Exact solution at times t =0, t=0.2,t=0.4,t = 0.6, t = 0.8 and t = 1 (from left to right).
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Fig. 3. Numerical solution computed with N = 600 and T = ﬁ fort €0, 1].
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t=0; t=0.2; 1=0.4; t=0.6; t=0.8; t=1

) 0.2 04 0.6 08 1
X

Fig. 4. Numerical solution computed with N = 600 and T = ﬁ at times t =0, t = 0.2,
t=0.4, t=0.6,t=0.8and t = 1 (from left to right).
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Fig. 5. Mesh trajectories.
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Fig. 6. Graphical comparison between the numerical and exact solutions.
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Fig. 7. Left: comparison between the numerical and exact solution.
Right: error between the numerical and exact solutions for (NS.st, NT.st) = (100; 300).



K. Lamien et al. / RAMReS Sciences des Structures et de la Matiéere

— U
t=0 )
1 " R
a8 1
0e 1 -
24 1 E
02 \ -
0 . A :
02 o4 0s os 1
=02
1 _ﬂ 4
as | g
as \ -
LT \ ]
- 1 4
I | E———
o . : i
02 o4 0s os 1
=04
1 \ 4
as | -
|
as H 1
04 ]
1
., .
0
a2 04 as 08 1
X
t=08
‘ 1
1=
|
—
0
0 02 0.4 05 0z 1
t=08
! 3
|
|
1=t |
|
—
o 5 5 A 5
o a2 04 0s 0z 1
t=1
1
15t
—
o 3 : 3 3
o 02 0.4 05 0z 1
X

Vol. 6, N° 2 (2022) 173 —185

Emorat=0
a3 v v v .
02
a1 .
o - . v *
o2 04 0s 0z 1
Emoratt=02
a3
oz
o1 ]
| | G S
o2 04 0s 0z 1
Emoratt=04
a3 . : v v
a2 -
o1 ]
5 A
o 02 as 0s 0z 1
X
Emoratt=06
o3 T v 5 v
02 1
ot ]
: A
a 0.2 04 0s (=X} 1
Emmoratt=08
03 T T T T
02 -
a1 ]
o - - - ).L
0 02 o4 a5 o8 1
Erroratt=1
03
o2 e
ot ]
Y E— B
a o2 (¥ s oe 1
X

Fig. 8. Left: comparison between the numerical and exact solutions.
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Right: error between the numerical and exact solutions for (NS.st, NT.st) = (600; 1500).
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5. Conclusion

In this paper, we have briefly described
the adaptive moving mesh finite volume method,
before applying it to the resolution of the chosen
test problem. Graphic comparisons between the
exact solution and the numerical solution were
carried out, before closing with the graphs making
it possible to observe the evolution of the error
according to the number of grid points. According
to obtained results, we effectively notice that the
adaptive moving mesh finite volume method has
some advantages. The main advantages
highlighted are the NS.st, NT.st, CPU.t and the
numerical solution accuracy. Adaptive moving
mesh methods offer a great possibility to improve
the accuracy of numerical solution by continuing
to increase the values of NS.st and NT.st.
Therefore, the adaptive moving mesh finite
volume method can be a best opportunity to
numerically solve problems with PDEs which are
hyperbolic conservation law with a small
diffusion term. However, we note that the number
of nodes at the origin of our results remains high
compared to literature reports. This is linked to
several reasons, some of which will be taken into
account in our future experiments, in particular

the Lagrangian form of the PDE of the problem.
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