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where ϕu : X × Y → R ∪ {+∞} is
a proper lower semicontinuous convex
function and u is the uncertain parame-
ter which belongs to the uncertainty set
U .
The robust counterpart of the problem
(P0) is the deterministic optimization
problem (see [1, 5, 13]).

(RP ) inf
x

sup
u

{ϕu(x, 0) : u ∈ U} s.t. x ∈ X.

The value of the problem (RP ) is the ro-
bust value of the problem (P0).
The worst value of the problem (P0) is
the value of the following problem (see
[11]).

(Q) sup
u

inf
x

{ϕu(x, 0) : x ∈ X} s.t. u ∈ U .

The equality between the robust value
and the worst value is in someway the
well know property "minimax Theo-
rem" [14]. This equality has been proven
in [11] in the particular case of uncertain
conical convex optimization problem. In
this case,

ϕu(x, 0) = (f + iHu)(x).
where Hu = {x ∈ X : gu(x) ∈ −S },
gu : X −→ Y is S-epi-closed convex and
iHu is the indicator function of Hu. So,
we generalize the result in [11].
For each fixed u ∈ U , the conjugate dual
problem [15–20] of (P0) is given by:

sup
y∗

{−ϕ∗
u(0, y∗)} s.t. y∗ ∈ Y ∗.

The optimistic dual of (P0) is the prob-
lem,

(DP ) sup
u

sup
y∗

{−ϕ∗
u(0, y∗) : y∗ ∈ Y ∗}

s.t. u ∈ U .

As said above, the focus in this paper
is to establish the equality between the
value of (RP ) and the value of (Q). So,
we will be able to deduce robust strong
duality and robust stable strong duality
property.

The paper is organized as follows.
The next section contains some neces-
sary preliminary results of convex anal-
ysis that will be used later in the paper.

In section 3, we establish the equality
between the worst value and the robust
value of the uncertain problem (P0) with
attainment of the worst value under nec-
essary and sufficient condition. We es-
tablish in the section 4, the robust strong
duality and the robust stable strong du-
ality property for (P0).

2 Preliminaries
Let X be a locally convex Hausdorff
topological vector space and f : X →
R∪{+∞} a function. The dual space of
X is denoted by X∗. It is known that the
space X∗ endowed with the weak∗ topol-
ogy is a locally convex Hausdorff space.
The effective domain and the epigraph
of the function f are respectively defined
by domf := {x ∈ X : f(x) < +∞} and
epif := {(x, r) ∈ X × R : f(x) ≤ r}.
If domf ̸= ∅, we say f is proper. f is
a lower semicontinuous function if and
only if epif is closed. f is say to be con-
vex if and only if epif is convex. The
Legendre-Fenchel conjugate function of
f denoted f∗ : X∗ → R, is defined by
f∗(x∗) = sup

x∈X
{⟨x∗, x⟩ − f(x)} for all

x∗ ∈ X∗. It is known that f∗ is a
proper weak∗ lower semicontinuous con-
vex function if f is a proper lower semi-
continuous convex function.
Given a subset A ⊂ X, we denote by
co(A) the convex hull of A, A its clo-
sure, co(A) its closed convex hull. On
the dual space X∗ we only consider the
week∗ topology and for any subset B of
X∗ we simply denote by B the week∗

closure of B. Given A, B two subsets
of X, we say that A is closed regard-
ing B if A ∩ B = A ∩ B ( [15]). A is
said to be closed convex regarding B if
co(A) ∩ B = A ∩ B ( [21]).
Given E ⊂ R = R ∪ {−∞, +∞}, we
write min E (respectively max E) in-
stead of inf E (respectively sup E) when
the infimum (respectively supremum) of
E is attained. The set of all proper
convex lower semi-continuous extended
real-valued functions defined on X is de-
noted by Γ(X).
The following Lemma will be useful
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later.
Lemma 1. [11, 15] Let fi : X →
R ∪ {+∞}, i ∈ I, be proper lower
semicontinuous convex functions on X,
where I is an arbitrary index set. Sup-
pose that there exists x0 ∈ X such that
sup
i∈I

fi(x0) < +∞. Then

epi
(

sup
i∈I

fi

)∗

= co
⋃

epif∗
i

where sup
i∈I

fi : X → R∪ {+∞} is defined

by (supi∈I fi)(x) = supi∈I fi(x) for all
x ∈ X.

3 Worst value and
robust value

In this section we establish the equality
between the worst value and the robust
value of the uncertain problem (P0) with
attainment of the worst value,
i.e, we show that :

inf
x∈X

sup
u∈U

ϕu(x, 0) = max
u∈U

inf
x∈X

ϕu(x, 0).

Let’s remember that the problem (P0) is
defined by,

(P0) inf ϕu(x, 0) s.t. x ∈ X,

where ϕu : X × Y → R ∪ {+∞} is
a proper lower semicontinuous convex
function and u is an uncertain param-
eter which belongs to an uncertainty set
U .
Let F =

⋂
u∈U

domϕu(., 0) and let’s define

the function p : X −→ R ∪ {+∞} by
p = sup

u∈U
ϕu(., 0).

Remark 1. We have domp = F and
inf(RP ) = inf(P ).
Proposition 1. It holds that

sup(Q) ≤ inf(RP )
Proof. We have :

inf
x∈X

ϕu(x, 0) ≤ ϕu(x, 0), ∀u ∈ U

sup
u∈U

inf
x∈X

ϕu(x, 0) ≤ sup
u∈U

ϕu(x, 0),

sup
u∈U

inf
x∈X

ϕu(x, 0) ≤ inf
x∈X

sup
u∈U

ϕu(x, 0),

then sup(Q) ≤ inf(RP ).

Let us consider the opposite of the
problem (Q) namely :

(−Q) inf
u

sup
x∈X

(
−ϕu(x, 0)

)
s.t. u ∈ U .

The perturbation of the objective func-
tion of (−Q) by adding a linear contin-
uous form leads to define the function,
q : X∗ −→ R by :

q(x∗) := inf
u∈U

sup
x∈X

{⟨x, x∗⟩ − ϕu(x, 0)}

= inf
u∈U

ϕ∗
u(x∗, 0).

As ϕ∗∗
u (., 0) ≤ ϕu(., 0) then,

q∗ = sup
u∈U

ϕ∗∗
u (., 0) ≤ sup

u∈U
ϕu(., 0) = p,

therefore p∗ ≤ q∗∗ ≤ q.

Lemma 2. Assume that ϕu(., 0) ∈
Γ(X), for all u ∈ U and F ̸= ∅. Then

epip∗ = co
( ⋃

u∈U
epiϕ∗

u(., 0)
)
. (1)

Proof. As ϕu(., 0) ∈ Γ(X), and F =⋂
u∈U

domϕu(., 0) ̸= ∅, then domp =

dom (supu∈U ϕu(., 0)) ̸= ∅. By taking
Lemma 1 into consideration, it yields

epip∗ = epi(sup
u∈U

ϕu(., 0))∗ = co
( ⋃

u∈U
epiϕ∗

u(., 0)
)
.

Example 1. Let us consider the uncer-
tain conical convex optimization prob-
lem:

(P) inf
x

f(x) s.t. gu(x) ∈ −S, x ∈ X

where S ⊂ Y is a nonempty closed con-
vex cone and for each u ∈ U , gu : X −→
Y is S-epi-closed convex. Then, ap-
pointing Hu = {x ∈ X : gu(x) ∈ −S }
and the indicator function of Hu, iHu,
The problem (P) can be written:

(P) inf
x

ϕu(x, 0) s.t. x ∈ X
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with,

ϕu(., 0) : X −→ R ∪ {+∞}, ϕu(x, 0)

= (f + iHu)(x).
So, the problem (P) which has been
considered in [11] is a particular case
of (P0). Let us consider the func-
tion p : X −→ R ∪ {+∞}, p(x) =
sup
u∈U

ϕu(x, 0) = sup
u∈U

(f + iHu)(x).

Let us consider the condition:

(C)


f ∈ Γ(X)
(
⋂

u∈U domgu)
⋂

domf ̸= ∅
gu is S − level − closed convex,

∀u ∈ U .

If the condition (C) holds, then sup
u∈U

(f +

iHu) = sup
u∈U

ϕu(., 0) ∈ Γ(X).

Therefore, by using the Lemma 2, one
have:

epip∗ = co

(⋃
u∈U

epiϕ∗
u(., 0)

)

= co

(⋃
u∈U

epi(f + iHu)∗
)

.

Theorem 1. Assume that ϕu(., 0) ∈
Γ(X), for all u ∈ U and F ̸= ∅. For
x∗ ∈ X∗ the following statements are
equivalent :

i) p∗(x∗) = minu∈U ϕ∗
u(x∗, 0);

ii)
⋃

u∈U
epiϕ∗

u(., 0) is weak∗-closed con-

vex regarding {x∗} × R.

Proof. Since domp ̸= ∅, then p∗(x∗) ̸=
−∞.
If p∗(x∗) = +∞ then, i) holds, because
p∗ ≤ q. And applying Lemma 1 one gets:

co
( ⋃

u∈U
epiϕ∗

u(., 0)
)⋂(

{x∗} × R
)

=

epip∗⋂(
{x∗} × R

)
= ∅

then, ii) holds too.
Assume now that p∗(x∗) ∈ R.
Let us prove that ii) ⇒ i).
By Lemma 1 it holds that

(x∗, p∗(x∗)) ∈ epip∗⋂(
{x∗} × R

)
=

co
( ⋃

u∈U
epiϕ∗

u(., 0)
)⋂(

{x∗} × R
)
.

As ii) holds, then

(x∗, p∗(x∗)) ∈
( ⋃

u∈U
epiϕ∗

u(., 0)
)⋂(

{x∗}×R
)
.

So, there exists u ∈ U such that :

inf
u

ϕ∗
u(x∗, 0) = q(x∗) ≤ ϕ∗

u(x∗, 0) ≤ p∗(x∗).

Since p∗(x∗) ≤ q(x∗) we get i).
Let us prove now i) ⇒ ii).
Let (x∗, r) ∈ co

( ⋃
u∈U

epiϕ∗
u(., 0)

)
.

Applying Lemma 1, we have p∗(x∗) ≤ r.
By i) there exists u ∈ U such that :
p∗(x∗) = ϕ∗

u(x∗, 0) and finally (x∗, r) ∈
epiϕ∗

u(., 0) and we have done.

Corollary 1. Assume that ϕu(., 0) ∈
Γ(X), for all u ∈ U and F ̸= ∅. Then
the following statements are equivalent :

i) maxu∈U inf(P0) = inf(RP );

ii) the set
⋃

u∈U
epiϕ∗

u(., 0) is weak∗-

closed convex regarding {0X∗} ×R.

We have,

p∗(0X∗) = sup
x∈X

{− sup
u∈U

ϕu(x, 0)}

= − inf
x∈X

sup
u∈U

ϕu(x, 0)

= − inf(p) = − inf(RP ) (∗).

We also have,

∀u ∈ U , ϕ∗
u(0X∗ , 0) = sup

x∈X
{−ϕu(x, 0)}

= − inf
x∈X

{ϕu(x, 0)},

therefore:

min
u∈U

ϕ∗
u(0X∗ , 0) = − max

u∈U
inf

x∈X
{ϕu(x, 0)}

= − max
u∈U

inf(P0) (∗∗).

By (∗) and (∗∗), one has inf(RP ) =
maxu∈U inf(P0) is equivalent to the
statement "the set

⋃
u∈U

epiϕ∗
u(., 0) is

weak∗-closed convex regarding {0X∗} ×
R" according to the Theorem 1.

Corollary 2. Assume that ϕu(., 0) ∈
Γ(X), for all u ∈ U and F ̸= ∅. Then
the following statements are equivalent :
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i) −∞ < p∗(x∗) = minu∈U ϕ∗
u(x∗, 0) ≤

+∞,
∀x∗ ∈ X∗;

ii) the set
⋃

u∈U
epiϕ∗

u(., 0) is weak∗-closed

convex.

Proof. The result follows from Theo-
rem 1 because the set

⋃
u∈U

epiϕ∗
u(., 0) is

weak∗-closed convex if and only if it is
weak∗-closed convex regarding {x∗} ×R
for all x∗ ∈ X∗.

4 Worst value and
robust strong dual-
ity property

For each fixed u ∈ U , the conjugate dual
problem of (P0) is given by [22]:

(Du) max
y∗

{−ϕ∗
u(0, y∗)} s.t. y∗ ∈ Y ∗.

The optimistic dual of the uncertain
problem (P0) is given by :

(DP ) sup
u

sup
y∗

{−ϕ∗
u(0, y∗) : y∗ ∈ Y ∗}

s.t. u ∈ U .

Robust strong duality property is holds
if the values of the robust counterpart
and the optimistic dual coincide with
dual attainment, i.e.

inf(RP ) = max(DP ).

Proposition 2. It holds that :

sup
u

sup
y∗

{−ϕ∗
u(0, y∗)} ≤ sup

u
inf
x

{ϕu(x, 0)}

i.e
sup(DP ) ≤ sup(Q).

Proof. For each fixed u ∈ U , the weak
duality between (P0) and (Du) holds i.e

sup
y∗∈Y ∗

{−ϕ∗
u(0, y∗)} ≤ inf(P0).

By taking the supremum of the terms in
both sides of it, the desired conclusion
follows.

We give robust version of the weak
duality.

Lemma 3 (Robust Weak Duality). If
ϕu : X × Y −→ R ∪ {+∞} is a proper
lower semicontinuous and convex func-
tion for any u ∈ U . Then,

inf
x∈X

sup
u∈U

ϕu(x, 0) ≥ sup
u∈U

sup
y∗∈Y∗

{−ϕ∗
u(0, y∗)}.

Proof. The juxtaposition of Proposition
1 and 2 give us the result.

One says that robust strong duality
holds for the problem (P0), whenever the
values of the robust counterpart and the
optimistic dual coincide with dual at-
tainment [11,22], i.e :

inf(RP ) = max(DP ).

Proposition 3. If robust strong duality
for (P0) holds then,

inf(RP ) = max(Q).

Proof. With the Proposition 1 and
Proposition 2 we have:

max(DP ) = sup(Q) = inf(RP ).

Consequently, there exists (u, y) ∈ U ×
Y ∗ such that :

−ϕ∗
u(0, y∗) = inf(RP )

= sup(Q)
≥ inf(P0,u)
≥ −ϕ∗

u(0, y∗),

where the last inequality follows from
the weak duality between (P0,u) and
(Du). Thus,

inf(RP ) = sup(Q) = inf(P0,u),

so, sup(Q) is attain.

We need following statement to es-
tablish robust strong duality property
for (P0).

Lemma 4 ( [15]). Let ϕ : X ×
Y −→ R be a proper, convex and lower
semicontinuous function such that 0 ∈
PrY (domϕ) and V a nonempty subset of
X∗. Then the following statements are
equivalent :

(i) (ϕ(., 0))∗(x∗) := sup
x∈X

{⟨x∗, x⟩ −

ϕ(x, 0)} = min
y∗∈Y ∗

ϕ∗(x∗, y∗), ∀x∗ ∈
V ;
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(ii) PrX∗×R(epiϕ∗)
is weak∗-closed regarding the set V ×
R.

Remark 2. We see that F ̸= ∅ ⇐⇒ 0 ∈
PrY (domϕu).

Proposition 4. If F ̸= ∅ and for all
u ∈ U , PrX∗×R(epiϕ∗

u) is closed regard-
ing the set {0X∗} × R then :

sup(DP ) = sup(Q).

Proof. With the Lemma 4, for all u ∈ U ,

sup
x∈X

{−ϕu(x, 0)} = min
y∗∈Y ∗

ϕ∗
u(0, y∗),

then,

inf
x∈X

{ϕu(x, 0)} = max
y∗∈Y ∗

{−ϕ∗
u(0, y∗)},

so,
sup(DP ) = sup(Q).

Theorem 2. Assume ϕu(., 0) ∈
Γ(X), ∀u ∈ U and F ̸= ∅.
If

⋃
u∈U

epiϕ∗
u(., 0) is weak∗-closed con-

vex regarding {0X∗} × R and if it ex-
ists u ∈ U such that PrX∗×R(epiϕ∗

u) is
weak∗-closed convex regarding {0X∗}×R
then robust strong duality property holds.

Proof. As
⋃

u∈U
epiϕ∗

u(., 0) is weak∗-closed

convex regarding {0X∗} × R then we
have from Corollary 1, inf(RP ) =
max(Q). So, there exists u ∈ U
such that inf(RP ) = inf(P0,u). As
PrX∗×R(epiϕ∗

u) is weak∗-closed convex
regarding {0X∗} × R it follows from the
Lemma 4 that inf(RP ) = max(Du) ≤
sup(DP ). From proposition 2, we have
sup(DP ) ≤ max(Q) = inf(RP ) =
max(Du) ≤ sup(DP ). Consequently,
inf(RP ) = max(DP ).

One says that robust stable strong
duality holds for (P0), if for each x∗ ∈
X∗, one has:

inf
x∈X

sup
u∈U

{ϕu(x, 0) − ⟨x∗, x⟩} =

max
u∈U

max
y∗∈Y ∗

{−ϕ∗(x∗, y∗)}.

Now, let us establish robust stable
strong duality for (P0).

Corollary 3. If ϕu(., 0) ∈ Γ(X),
for all u ∈ U , F ̸= ∅, the
set

⋃
u∈U

epiϕ∗
u(., 0) is weak∗-closed con-

vex and PrX∗×R(epiϕ∗) is weak∗-closed.
Then, robust stable strong duality holds
for (P0).

Proof. With corollary 2, we have

inf
x∈X

sup
u∈U

{ϕu(x, 0) − ⟨x∗, x⟩} =

max
u∈U

inf
x∈X

{ϕu(x, 0) − ⟨x∗, x⟩},

then there exists u ∈ U such that

inf
x∈X

sup
u∈U

{ϕu(x, 0) − ⟨x∗, x⟩} =

inf
x∈X

{ϕu(x, 0) − ⟨x∗, x⟩}.

Lemma 4 gives us

inf
x∈X

sup
u∈U

{ϕu(x, 0) − ⟨x∗, x⟩} =

max
y∗∈Y ∗

{−ϕ∗
u(x∗, y∗)} ≤

sup
u∈U

max
y∗∈Y ∗

{−ϕ∗
u(x∗, y∗)} .

We conclude by using the robust weak
duality.

5 Conclusion
We have considered the general form of
convex optimization problem under un-
certainty :

(P0) inf
x

ϕu(x, 0) s.t. x ∈ X.

We have established equality between
the worst value and the robust value of
(P0). Then, we have deduced the robust
strong duality property. So, we general-
ize the results in [11], where the problem
considered is in the form:

(P) inf
x

f(x) s.t. gu(x) ∈ −S, x ∈ X.

In particular, the condition
ϕu(., 0) ∈ Γ(X), ∀u ∈ U and F ̸= ∅⋃
u∈U

epiϕ∗
u(., 0) is weak∗-closed convex

regarding {0X∗} × R
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ensuring equality between the worst
value and the robust value in this paper
is weak than the condition:

(H)



f ∈ Γ(X)
F ∩ domf ̸= ∅
gu is C-level-closed,∀u ∈ U⋃

u∈U epi(f + iFu)∗ is weak-closed
convex regarding {0X∗} × R.

which has been considered in [11].
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