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Abstract:

In this paper we consider general form of a optimization problem in face of data uncertainty.
We determine a necessary and sufficient condition ensuring the equality between the worst
value and the robust value of this uncertain problem with attainment of the worst value. And

we deduce robust strong duality and robust stable strong duality property.
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1 Introduction

In  the real-world optimization where X is a locally convex Hausdorff

problems; we are frequently opposed to the
uncertainty of data [1-3]. Some approaches
have been developed to resolve these
uncertain problems such as robust and
stochastic methods [4-10]. Our focus in this
paper is about robust optimization. We
establish the equality between the value of
the robust counterpart and the worst value
[11] for a more general form of optimization
problem in the face of data uncertainty,
with attainment of the worst value.

Consider the following convex optimization

problem:

(P) ir;ff(x) st.ze X

topological vector space and f:X - RU
{+o0} a proper lower semicontinuous
convex function. This problem can be
embedded into a family of parameterized
problems (see [12]):
(Py) ig{lf d(x,y) st. z € X,

where y € VY; Y is a locally convex
Hausdorff topological vector space and,
¢ X XY = RU {+oo} a function satisfying
¢(x,0) = f(x).

In the face of data uncertainty, (P)) can be

written:

(P,) inf, (x,y) st. z€ X
X
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where ¢, : X xY — R U {+o0} is
a proper lower semicontinuous convex
function and w is the uncertain parame-
ter which belongs to the uncertainty set
U.

The robust counterpart of the problem
(Py) is the deterministic optimization
problem (see [1,5,13]).

(RP) ir%fsup{qﬁu(x,O) cueUlst.ze X

The value of the problem (RP) is the ro-
bust value of the problem (F).

The worst value of the problem (Fp) is
the value of the following problem (see

[11]).

(@Q) Supigf{(ﬁu(m,O) : xe X} st uel.

The equality between the robust value
and the worst value is in someway the
well know property "minimax Theo-
rem" [14]. This equality has been proven
in [11] in the particular case of uncertain
conical convex optimization problem. In
this case,

Pu(2,0) = (f +in,)(2).
where H, = {z € X : gu(z) € =S },
gy : X — Y is S-epi-closed convex and
i, is the indicator function of H,. So,
we generalize the result in [11].

For each fixed u € U, the conjugate dual
problem [15-20] of (P) is given by:

sup{—¢,(0,57)} st yTeY"
Y

The optimistic dual of (FPy) is the prob-
lem,
(DP) supsup{—¢,(0,y"): y* € Y*}
u y*
s.t. u eU.

As said above, the focus in this paper
is to establish the equality between the
value of (RP) and the value of (Q). So,
we will be able to deduce robust strong
duality and robust stable strong duality

property.

The paper is organized as follows.
The next section contains some neces-
sary preliminary results of convex anal-
ysis that will be used later in the paper.

In section 3, we establish the equality
between the worst value and the robust
value of the uncertain problem (Fy) with
attainment of the worst value under nec-
essary and sufficient condition. We es-
tablish in the section 4, the robust strong
duality and the robust stable strong du-
ality property for (FPp).

2 Preliminaries

Let X be a locally convex Hausdorff
topological vector space and f : X —
RU{+o0} a function. The dual space of
X is denoted by X*. It is known that the
space X* endowed with the weak™ topol-
ogy is a locally convex Hausdorff space.
The effective domain and the epigraph
of the function f are respectively defined
by domf :={z € X : f(z) < 400} and
epif = {(z,r) € X xR : f(z) < r}.
If domf # 0, we say f is proper. f is
a lower semicontinuous function if and
only if epif is closed. f is say to be con-
vex if and only if epif is convex. The
Legendre-Fenchel conjugate function of
f denoted f*: X* — R, is defined by
fA(z*) = sup{(z*,z) — f(x)} for all
zeX
¥ e X*. €It is known that f* is a
proper weak* lower semicontinuous con-
vex function if f is a proper lower semi-
continuous convex function.
Given a subset A C X, we denote by
co(A) the convex hull of A, A its clo-
sure, co(A) its closed convex hull. On
the dual space X* we only consider the
week™® topology and for any subset B of
X* we simply denote by B the week*
closure of B. Given A, B two subsets
of X, we say that A is closed regard-
ing Bif AnNB = ANB ([15]). Ais
said to be closed convex regarding B if
w(A)NB=AnNB ([21]).
Given E C R = RU {—o0, +o0}, we
write min E (respectively max E) in-
stead of inf F (respectively sup E) when
the infimum (respectively supremum) of
FE is attained. The set of all proper
convex lower semi-continuous extended
real-valued functions defined on X is de-
noted by I'(X).
The following Lemma will be useful

Page 25 of 31

Vol. 8, N° 2 (2024) 24-31



A. Ouédraogo et al. / RAMReS Sciences des Structures et de la Matiére

later.

Lemma 1. [11,15] Let f; : X —
R U {+o0}, i € I, be proper lower
semicontinuous convex functions on X,
where I is an arbitrary index set. Sup-
pose that there exists xg € X such that

sup fi(xg) < +o00. Then
i€l

epi <sup fi> = @U epif;

iel
where sup f; : X = RU {400} is defined
el
by (sup;er fi)(z) = sup;es fi(z) for all
reX.

3 Worst wvalue and
robust value

In this section we establish the equality
between the worst value and the robust
value of the uncertain problem (Fp) with
attainment of the worst value,
i.e, we show that :

inf sup ¢, (x,0) = max 1é1)f( ¢u(z,0).

ze€X el uel z

Let’s remember that the problem (FPp) is
defined by,

(Py) inf¢u(z,0) st. ze X,

where ¢, : X xY — R U {400} is
a proper lower semicontinuous convex
function and u is an uncertain param-
eter which belongs to an uncertainty set
Uu.

Let F' = ﬂ domey(.,0) and let’s define

uelU
the function p : X — R U {400} by

p = sup ¢u(.,0).
ueU
Remark 1. We have domp = F and
inf(RP) = inf(P).
Proposition 1. It holds that
sup(Q) < inf(RP)
Proof. We have :

inf Ou(z,0) < ¢y(x,0), Yu el
sup mf ¢u(z,0) < sup Ou(z,0),
uel T€X

sup inf ¢, (z,0) < 1nf sup ¢y (z,0),
uel T€X X uel

then sup(Q) < inf(RP).

Let us consider the opposite of the
problem (Q) namely :

(—Q) infsup (—¢u(z,0)) st uel.
v oreX

The perturbation of the objective func-
tion of (—@Q) by adding a linear contin-
uous form leads to define the function,
qg: X*— Rby:

q(z*) = 52552}?{@ z*) — ¢u(z,0)}

— inf .
inf ¢y (2", 0)

As 65(.,0) < (-, 0) then,

q" = sup ¢, (.,0) < sup ¢y (., 0) = p,
ueU ueU

therefore p* < ¢™* < q.

Lemma 2. Assume that ¢,(.,0) €
I['(X), for allu € U and F # (. Then

epip” =o( | epig;(.,0)). (1)

uelU

Proof. As ¢,(.,0) € I'(X), and F =
ﬂ domgy(.,0) # 0, then domp =
uelU

dom (sup,cyy ¢u(-,0)) # 0. By taking
Lemma 1 into consideration, it yields

epip* = epi(sgg du(.,0))" =co( U epig(.,0)).

Example 1. Let us consider the uncer-
tain conical convexr optimization prob-
lem:

(P) inff(r) st guz)e-S zeX

where S CY is a nonempty closed con-
vex cone and for eachu €U, gy : X —
Y is S-epi-closed conver. Then, ap-
pointing H, ={z € X : gy(z) € =S }
and the indicator function of Hy, im,,
The problem (P) can be written:

(P) ilgclf ¢u(z,0) st. xeX
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with,
Gu(,0): X — RU{+0o0}, ¢u(z,0)
= (f+im,) ().

So, the problem (P) which has been
considered in [11] is a particular case

of (Py). Let us consider the func-
tion p : X — RU {400}, pz) =
sup ¢y (x,0) = sup(f +ig, )().
ueU ueU
Let us consider the condition:
fel(X)
(©) (Nucu domgy,) N domf #
gy s S — level — closed convex,
Yu e U.

If the condition (C) holds, then sup(f +
ueU
im,) = sup ¢u(.,0) € T(X).
ueU

Therefore, by using the Lemma 2, one
have:

epip* =0 ( U 6pi¢2(~,0)>

ueU

:co<U epi(f—i—iHu)*) :

uel

Theorem 1. Assume that ¢, (.,0) €
I'(X), for all w € U and F # 0. For
z* € X* the following statements are
equivalent :

i) p*(x*) = min,ey @5 (2*,0);
it) U epio,,(.,0) is weak”-closed con-

uel
vex regarding {x*} x R.

Proof. Since domp # (), then p*(z*) #
—00.

If p*(x*) = 400 then, i) holds, because
p* < ¢. And applying Lemma 1 one gets:

(| epigl(,0) ({2} x R) =

uel
epip* ﬂ {z"}xR) =0

then, 4i) holds too.

Assume now that p*(z*) € R.
Let us prove that ii) = 7).
By Lemma 1 it holds that

(z*,p*(z*)) € epip* ﬂ ({z*} xR) =
e | epiei(0) () (fa*) x ).

ueU

Vol. 8, N° 2 (2024) 24-31

As i) holds, then

(2", p"(2")) € (| epien (- 0) [ ({z"} xR).

ueU

So, there exists w € U such that :

inf ¢, (z%,0) = ¢(z7) < ¢z (2", 0) < p" (")

Since p*(z*) < q(z*) we get 7).
Let us prove now i) = ii).
Let (z*,7) € co( | J epigj(.,0)).

uelU
Applying Lemma 1, we have p*(z*) < r.
By i) there exists u € U such that :
p*(z*) = ¢X(x*,0) and finally (z*,r) €
epigi(.,0) and we have done. O]

Corollary 1. Assume that ¢,(.,0) €
['(X), for allu € U and F # (. Then

the following statements are equivalent :
i) maxyey inf(Py) = inf(RP);

it) the set U epigy(.,0) is weak”-
ueld
closed conver regarding {Ox~} x R.

We have,
p*(0x+) = sup{—sup ¢y(z,0)}
zeX uel
— 1 f
Inf sup bu(z,0)

= —inf(p) = —inf(RP) (x).
We also have,
VueU, ¢, (0x+,0)=sup{—a¢,(z,0)}
zeX

= — inf {¢u(z,0)},
therefore:
min QSZ(OX*?O) = —max inf {¢u($7 0)}

ueU ueU reX
= — inf (P, K% ).
max inf(Pp) ()

By (%) and (#x), one has inf(RP) =
maxyey inf(Py) is equivalent to the
statement "the set U epigy(.,0) is
uel
weak*-closed convex regarding {Ox+} X

R" according to the Theorem 1.

Corollary 2. Assume that ¢,(.,0) €
I'(X), for allu € U and F # (. Then

the following statements are equivalent :
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i) —oo < p*(z*) = ming,ey ¢ (x*,0) <
+00,
Va* e X
i) the set U epigy,(.,0) is weak™-closed
ueld
convet.
Proof. The result follows from Theo-

rem 1 because the set U epigy,(.,0) is

uel
weak*-closed convex if and only if it is

weak™-closed convex regarding {z*} x R
for all z* € X™. O]

4 Worst value and
robust strong dual-
ity property

For each fixed u € U, the conjugate dual
problem of (Pp) is given by [22]:

(D) max{—¢,(0,y")} st.y" €Y.

The optimistic dual of the uncertain
problem (Fp) is given by :

(DP)  supsup{—¢,(0,y"): y" €Y"}
u y*
st. uwel.

Robust strong duality property is holds
if the values of the robust counterpart
and the optimistic dual coincide with
dual attainment, i.e.

inf(RP) = max(DP).
Proposition 2. It holds that :

sup sup{—¢,(0,4")} < sup inf{¢p,(z,0)}
u y* u

' sup(DP) < sup(Q).

Proof. For each fixed u € U, the weak
duality between (Fy) and (D,,) holds i.e

sup {—¢,(0,y")} < inf(F).

y*EY*

By taking the supremum of the terms in
both sides of it, the desired conclusion
follows. O

We give robust version of the weak
duality.

Lemma 3 (Robust Weak Duality). If
¢u: X XY — RU {+o0} is a proper
lower semicontinuous and convex func-
tion for any u € U. Then,

inf sup ¢y (x,0) > sup sup {—¢,(0,y")}.
z€X yeU u€lU y*eY*

Proof. The juxtaposition of Proposition
1 and 2 give us the result. O

One says that robust strong duality
holds for the problem (FPp), whenever the
values of the robust counterpart and the
optimistic dual coincide with dual at-
tainment [11,22], i.e :

inf(RP) = max(DP).

Proposition 3. If robust strong duality
for (Py) holds then,

inf(RP) = max(Q).

Proof. With the Proposition 1 and
Proposition 2 we have:

max(DP) = sup(Q) = inf(RP).

Consequently, there exists (u,y) € U %
Y™ such that :

2 _(Z)%(O: g*)7

where the last inequality follows from
the weak duality between (FPpz) and
(Dz). Thus,

inf(RP) = sup(Q) = inf(Poz),
so, sup(Q) is attain. O

We need following statement to es-
tablish robust strong duality property
for (PO)

Lemma 4 ( [15]). Let ¢ : X X
Y — R be a proper, convex and lower
semicontinuous function such that 0 €
Pry(dom¢) and V' a nonempty subset of
X*. Then the following statements are
equivalent :

(i) (¢(-,0)"(z") = sup{(z”,z) —

rzeX
¢(z,0)} = min ¢*(z*,y"), Vz*e
y*ey*
Vi
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(ii) Prx«xr(epi¢®)
is weak”-closed regarding the set V x
R.

Remark 2. We see that FF # () <0 €
PW(d0m¢u)

Proposition 4. If F # () and for all
u € U, Prx-xr(epi¢}) is closed regard-
ing the set {Ox+} x R then :

sup(DP) = sup(Q).

Proof. With the Lemma 4, for all u € U,
sup{—¢y(z,0)} = min ¢, (0,y"),
then,

mf {¢u($ 0)} = max {—¢;(0,y")},

*Y*

S0,
sup(DP) = sup(Q).
O

Theorem 2. Assume ¢,(.,0) €

I'(X), Vu e U and F # 0.

If | epig),(.,0
uelU

vex regarding {Ox+} x R and if it ex-

ists w € U such that Prx«yr(epi¢k) is
weak”-closed convex regarding {0x~} xR
then robust strong duality property holds.

Proof. As U epigy,(.,0) is weak*-closed
uel
convex regarding {Ox+} x R then we

have from Corollary 1, inf(RP) =
max(Q). So, there exists © € U
such that inf(RP) = inf(Pyy). As
Pry«xr(epi¢s) is weak*-closed convex
regarding {Ox+} x R it follows from the
Lemma 4 that inf(RP) = max(Dgy) <
sup(DP). From proposition 2, we have
sup(DP) < max(Q) = inf(RP) =
max(Dy) < sup(DP). Consequently,
inf(RP) = max(DP). O

) is weak*-closed con-

One says that robust stable strong
duality holds for (Fy), if for each x* €
X*, one has:

inf sup{6(x,0) ~ (2", )} =

max max {—¢" (2", ")}

Now, let us establish robust stable
strong duality for (F).

Vol. 8, N° 2 (2024) 24-31

Corollary 3. If ¢,(.,0) € T(X),

for all w € U, F # 0, the

set U epigy (.,0) is weak™-closed con-
uel

vex and Prx«.r(epi¢*) is weak®-closed.

Then, robust stable strong duality holds
for (Py).

Proof. With corollary 2, we have

inf sup{¢y(z,0) — (z*,2)} =
ze€X el

max inf {¢u(z,0) — (2", 2)},

then there exists w € U such that

inf sup{¢y(z,0) — (z*,2)} =
zeX weU

Lemma 4 gives us

inf sup{¢,(z,0) — (z*,z)} =

reX yel
Jnax {=¢g(a”y)} <
sup max {=¢u(2",y")}-

We conclude by using the robust weak
duality. O

5 Conclusion

We have considered the general form of
convex optimization problem under un-
certainty :

(Py) igfgbu(x,O) st. zeX.

We have established equality between
the worst value and the robust value of
(Py). Then, we have deduced the robust
strong duality property. So, we general-
ize the results in [11], where the problem
considered is in the form:

(P) ir%ff(x) sit. gu(z) € =S, z € X.
In particular, the condition

¢u(.,0) ET(X),Yu €U and F # ()

U epigy(.,0) is weak®-closed convex
ueU
regarding {Ox~} x R
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ensuring equality between the worst
value and the robust value in this paper
is weak than the condition:

fel(X)

Fndomf # 0

(H) gy is C-level-closed,Vu € U
Uuer epi(f +ip, )" is weak-closed

convex regarding {Ox«} x R.

which has been considered in [11].
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