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Finally we define in nonzero characteristic,
an infinite family of differential operators
on L which will generate the algebra of
differential operators on L (Theorem 3.5).

For the notations used in this paper see
Appendix.

2 Ring of Laurent
polynomials: Algebra
of differential opera-
tors

2.1 Laurent polynomials ring
Definition 2.1. Let R be a commutative
ring.
A Laurent polynomial with coefficients in R
is an expression of the form :

p(x) =
∑
k∈Z

akxk, ak ∈ R

where only a finite number of the coefficients
ak are different from 0.

The set of Laurent polynomials with
coefficients in a commutative ring R is de-
noted R [x, x−1] or R [x±1]. This set is pro-
vided with a ring structure with the same
operations as the ring of polynomials over R,
where summation index could take negative
values.
In particular, the Laurent polynomials ring
is obtained by localization of the ring of
polynomials. The multiplicative part of this
localization is S = {xn, n ∈ N}. Therefore,
we have the following operations:

i)
(∑

i

aix
i

)
+
(∑

i

bix
i

)
=
∑

i

(ai + bi) xi;

ii)
(∑

i

aix
i

)
.

∑
j

bjx
j

 =
∑

k

 ∑
i,j:i+j=k

aibj

xk;

and the natural structure of R-module al-
lows to define the multiplication by a scalar

a
∑
k∈Z

akxk =
∑
k∈Z

aakxk.

Laurent’s polynomials can be general-
ized easily to several indeterminates, the
correspon-
ding ring being denoted R

[
x±1

i

]
.

Properties 1.

1) R [x] is a subring of R [x±1] wich is a
subring of the ring of rational fractions
R(x).

2) The ring R [x±1] is a Noetherian ring
but not an Artinian one.

3) If k is a field, then k [x±1] is an Eu-
clidean ring (as localized of k(x)).

Definition 2.2. (Derivations on Laurent
polynomials ring).
Let R be a zero characteristic field.

1) A derivation on R
[
x±1

i

]
is:

∂i :
∑

α∈Zn

ℓαxα 7−→
∑

i

αiℓαxαi−1
i .

2) Any derivation on R
[
x±1

i

]
is in the

form ∑
i

ℓi∂i, for all ℓi ∈ R
[
x±1

i

]
.

2.2 Algebra of differential
operators on a commuta-
tive algebra

Definition 2.3. (Differential operators).
Let A be a commutative algebra over a field
k, and let M and N be left A-modules. The
set of differential operators from M to N is
defined inductively by :

DA(M, N) = ∪
n∈N

Dn
A(M, N),

where

D0
A(M, N) = HomA(M, N)

and for n ∈ N∗,

Dn
A(M, N) ={u ∈ Homk(M, N) :

[u, a] = ua − au ∈ Dn−1
A (M, N),

∀a ∈ A}.
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ua and au are elements of Homk(M, N)
defined by:

∀m ∈ M, ua(m) = u(am) and au(m)
= a (u(m)) .

Any element u ∈ Dn
A(M, N) is called differ-

ential operator of order n from M to N .

Definition 2.4. (Algebra of differential op-
erators).
Let A be a k-algebra and let M be an A-
module. When M = N = A, the algebra
DA(A) that we will denote D(A), is called
the algebra of differential operators on A.

Properties 2.

1) Endk(A) is a (A, A)-bimodule.

2) Endk(A) is a (D(A), D(A))-bimodule.

3) Let n ≥ 0 be an integer, Dn(A) is a
(A, A)-subbimodule of Endk(A).

4) D(A) is a (A, A)-subbimodule of
Endk(A).

Proof.

1) We know that Endk(A) is an additive
group.

a) Let φ1, φ2 be the following ap-
plications:

φ1 : A × Endk(A) −→ Endk(A)
(a, u) 7−→ au

and

φ2 : Endk(A) × A −→ Endk(A)
(u, a) 7−→ ua

.

We deduce from φ1 (respectively
from φ2), that Endk(A) is a left
A-module (respectively a right
A-module).

b) In addition, for all a ∈ A and all
u, v ∈ Endk(A), we have:

(ua) ◦ v = u ◦ (av) .

As a result, according to a) and b),
Endk(A) is a (A, A)-bimodule.

2) Let us show that Endk(A) is a
(D(A), D(A))-bimodule.

a) Let φ3 , φ4 be the following ap-
plications:

φ3 : D(A) × Endk(A) −→ Endk(A)
(u, v) 7−→ u ◦ v

and

φ4 : Endk(A) × D(A) −→ Endk(A)
(v, u) 7−→ v ◦ u

.

We deduce from φ3 (respectively
from φ4), that Endk(A) is a
left D(A)-module (respectively a
right D(A)-module).

b) For all v1, v2 ∈ Endk(A) and all
u ∈ D(A), we have:

(u ◦ v1) ◦ v2 = u ◦ (v1 ◦ v2) .

According to these two points,
Endk(A) is a (D(A), D(A))-bimodule.

3) Let n ≥ 0 be an integer and show
that Dn(A) is a (A, A)-subbimodule
of Endk(A).

a) We show by induction on the or-
der n, that Dn(A) is a subgroup
of Endk(A). We have:

i) 0Endk(A) ∈ Dn(A) and
Dn(A) ⊆ Endk(A).

ii) Let u, v ∈ Dn(A).
• For n = 0, we have

u − v ∈ D0(A) because
D0(A) = EndA (A) .

• Induction hypothesis.
Let n ∈ N∗ and q ∈ N
such that q < n. If u, v ∈
Dq(A), then u − v ∈
Dq(A).

• Suppose u, v ∈ Dn(A) and
let show that

u − v ∈ Dn(A).

Page 134 of 143



A. Sama et al./RAMReS Sciences des Structures et de la Matière Vol. 7, n◦ 2 (2023) 132-143

We have

u, v ∈ Dn(A) ⇐⇒
[u, a] ∈ Dn−1(A), ∀a ∈ A

[v, a] ∈ Dn−1(A), ∀a ∈ A
.

We deduce by induction
hypothesis that:

[u − v, a] = [u, a] − [v, a]
∈ Dn−1(A), ∀a ∈ A.

Yet

Dn(A) ={w ∈ Endk(A),
[w, a] ∈ Dn−1(A)},

thus u − v ∈ Dn(A).
We conclude that for all n ∈
N and all u, v ∈ Dn(A),

u − v ∈ Dn(A).

From i) and ii), we deduce that
for all n ∈ N, Dn(A) is a sub-
group of Endk(A).

b) Let a, b ∈ A and u ∈ Dn(A). We
have

[au, b] = a[u, b].

Yet u ∈ Dn(A), thus

[au, b] = a[u, b] ∈ Dn−1(A),

wich means that au ∈ Dn(A). So,

∀ (a, n) ∈ A × N,
aDn(A) ⊆ Dn(A).

c) Likewise we show that

∀ (a, n) ∈ A×N, Dn(A)a ⊆ Dn(A).

Therefore, from 3.a), 3.b) and 3.c), we
deduce that for all n ∈ N, Dn(A) is a
(A, A)-subbimodule of Endk(A).

4) Let us show that D(A) is a (A, A)-
subbimodule of Endk(A).
Let a ∈ A, u ∈ D(A) .

a) D(A) is a subgroup of Endk(A)
because for all n ∈ N, Dn(A) is
a subgroup of Endk(A).

b) u ∈ D(A) is equivalent to there
exists n ∈ N such that u ∈
Dn(A). So, by 3.b) and 3.c), we
have

∀n ∈ N, au ∈ D(A) and
ua ∈ D(A).

From 4.a) and 4.b), D(A) is a (A, A)-
subbimodule of Endk(A).

Proposition 2.1.

1) idA ∈ D(A) and D0(A) is identified to
A by

φ : A −→ D0(A)
a 7−→ φa

such that

∀x ∈ A, φa(x) = ax.

2) Dn(A) ⊆ Dn+1(A), for all n ∈ N.

3) Dm(A).Dn(A) ⊆ Dm+n(A), for all
m, n ∈ N.

4) [Dm(A), Dn(A)] ⊆ Dm+n−1(A), for all
m, n ∈ N.

5) Dm(A) + Dn(A) ⊆ DMax{m,n}(A), for
all m, n ∈ N.

6) D(A) is a subalgebra of Endk(A).

Proof.

1) It is known that idA ∈ EndA(A).
Yet D0(A) = EndA(A) and D0(A) ⊂
D(A), thus idA ∈ D(A). Let us show
that D0(A) is identified to A.
Consider u ∈ D0(A) and a ∈ A. Then
ua, au ∈ D0(A) because D0(A) is a
(A, A)-bimodule. Let

φ :A −→ D0(A)
x 7−→ φx : A −→ A

a 7−→ xa
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be a morphism. We have:

u ∈ D0(A) ⇐⇒ [u, x] = ux − xu

= 0Endk(A), ∀x ∈ A.

So,

∀a ∈ A, u(xa) = xu(a) = xau(1A), (∗)

wich means that

∀a ∈ A, u ◦ φx(a) = φx ◦ u(a).

In particular, for a = 1, (∗) becomes

∀x ∈ A, u(x) = xu(1A) = φu(1A) (x) .

So, u = φu(1A), that is for any el-
ement u ∈ D0(A), identifies with
a multiplicative morphism φb, where
b = u(1A) ∈ A.

2) Let us show by induction that:

Dn(A) ⊆ Dn+1(A), ∀n ∈ N.

i) For n = 0, we have

D0(A) = EndA(A) ⊆ Endk(A).

Let u ∈ D0(A) and (a, x) ∈ A2.
We have:

[u, a] (x) = u (ax) − au (x)
= au (x) − au (x) = 0

(u (ax) = au (x) because u ∈ EndA(A)).
So,

∀a ∈ A, [u, a] ∈ D0(A).

Yet

D1(A) = {u ∈ Endk(A) :
[u, a] ∈ D0(A), ∀a ∈ A},

thus D0(A) ⊆ D1(A).
ii) Induction hypothesis.

Let n ∈ N∗ and q ∈ N. If 0 ≤
q < n, then Dq(A) ⊆ Dq+1(A).

iii) Let show that Dn(A) ⊆
Dn+1(A).
Consider u ∈ Dn(A). That is
equivalent to

u ∈ Endk(A) and
[u, a] ∈ Dn−1(A), ∀a ∈ A.

By Induction hypothesis we have
Dn−1(A) ⊆ Dn(A). So,

[u, a] ∈ Dn(A), ∀a ∈ A.

Yet

Dn+1(A) ={u ∈ Endk(A) :
[u, a] ∈ Dn(A), ∀a ∈ A},

thus u ∈ Dn+1(A) and we obtain
Dn(A) ⊆ Dn+1(A).

Conclusion : Dn(A) ⊆ Dn+1(A), ∀n ∈
N.

3) Let us show by induction on r = m+n
that:

Dm(A).Dn(A) ⊆ Dm+n(A), ∀m, n ∈ N.

i) For r = m = n = 0, we have
D0(A).D0(A) ⊆ D0(A) because
D0(A) = EndA(A).

ii) Induction hypothesis.
Let n ∈ N∗ and r, s,t ∈ N. If
0 ≤ r < n where r = s + t, then

Ds(A).Dt(A) ⊆ Dr(A).

iii) Let us show that for r = n =
s + t, Ds(A).Dt(A) ⊆ Dn(A).
Let u ∈ Ds(A), v ∈ Dt(A) and
a ∈ A. Obviously, u ◦ v ∈
Endk(A) and we have

[u ◦ v, a] = u ◦ [v, a] + [u, a] ◦ v,

yet [u, a] ∈ Ds−1(A) and
[v, a] ∈ Dt−1(A). Thus, by In-
duction hypothesis we have :

u ◦ [v, a] ∈ Ds+t−1(A)
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and

[u, a] ◦ v ∈ Ds+t−1(A).

Therefore,

∀a ∈ A, [u◦v, a] ∈ Ds+t−1(A) = Dn−1(A).

It follows that u ◦ v ∈ Dn(A), so
Ds(A).Dt(A) ⊆ Dn(A).

We conclude that:

Dm(A).Dn(A) ⊆ Dm+n(A), ∀m, n ∈ N.

4) Let us show by induction that

[Dm(A), Dn(A)] ⊆ Dm+n−1(A), ∀m, n ∈ N,

with D−1(A) = {0Endk(A)}.

i) Let m = n = 0 and u, v ∈
D0(A). We have [u, v] = u ◦ v −
v ◦ u ∈ D0(A) because D0(A) =
EndA(A). So,

∀a ∈ A, [[u, v], a] = 0Endk(A) ∈ D−1(A).

We obtain then

[D0(A), D0(A)] ⊆ D−1(A).

ii) Induction hypothesis.
Consider s ∈ N∗ and m, n, r ∈ N
such that r = m + n. If 0 ≤
r < s, then [Dm(A), Dn(A)] ⊆
Dr−1(A).

iii) Let us show that for r =
s, we have [Dm(A), Dn(A)] ⊆
Ds−1(A).
Let (u, v) ∈ Dm(A) × Dn(A) and
a ∈ A. We have

[a, [u, v]] + [v, [a, u]] + [u, [v, a]] =
0 (Jacobi relation).

So,

[[u, v], a] = [v, [a, u]] + [u, [v, a]]
= −[v, [u, a]] + [u, [v, a]].

Yet

[u, a] ∈ Dm−1(A) and
[v, a] ∈ Dn−1(A), ∀a ∈ A,

thus, by induction hypothesis, we
have:

{
[v, [u, a]] ∈ Dm+n−2(A), ∀a ∈ A
[u, [v, a]] ∈ Dm+n−2(A), ∀a ∈ A

,

because m+n−1 < s. It follows
that

[[u, v], a] ∈ Dm+n−2(A), ∀a ∈ A,

which means that

[u, v] ∈ Dm+n−1(A) = Ds−1(A).

Consequently, for all m, n ∈ N,

[Dm(A), Dn(A)] ⊆ Dm+n−1(A).

5) Let us show by induction that:

Dm(A)+Dn(A) ⊆ DMax{m,n}(A), ∀m, n ∈ N.

i) For m = n = 0, we have:

D0(A) + D0(A) ⊆ D0(A)

due to the fact that

D0(A) = EndA(A).

ii) Induction hypothesis.
For all s ∈ N∗ and all (m, n) ∈
N2, if 0 ≤ m, n < s, then

Dm(A) + Dn(A) ⊆ Dmax{m,n}.

iii) Let us show that

Dm(A) + Dn(A) ⊆ Ds(A)

with s = max{m, n}. Consider
a ∈ A and (u, v) ∈ Dm(A) ×
Dn(A). We have

[u + v, a] = [u, a] + [v, a].

Yet

[u, a] ∈ Dm−1(A) and [v, a] ∈ Dn−1(A),

thus, by induction hypothesis we
have :

[u + v, a] ∈ DMax{m−1,n−1}(A).

Yet max{m − 1, n − 1} = s − 1,
so u + v ∈ Ds(A).
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It follows that for all m, n ∈ N,

Dm(A) + Dn(a) ⊆ DMax{m,n}(A).

6) According to 1), 2) and 3), D(A) is a
subring of Endk(A). In addition, for
all α ∈ k, αD(A) ⊆ D(A). So, the sub-
ring D(A) is a subalgebra of Endk(A).

Proposition 2.2. (cf. [4])
For all k-algebra A, D1(A) = A ⊕ Derk(A).

2.3 Weyl algebra
Definition 2.5. The n-th weyl algebra is an
associative, unitary and non-commutative
algebra, generated by 2n elements x1, . . . , xn

and y1, . . . , yn, that satisfy the following
defining relations:

1) [xi, xj] = [yi, yj] = 0;

2) [yi, xj] = δij, where δij is the Kro-
necker delta for all i, j ∈ {1, . . . , n}.

The n-th weyl algebra is denoted An(k).

The following proposition shows that in
characteristic zero, the algebra of differen-
tial operators on a polynomial algebra is a
Weyl algebra.

Proposition 2.3. (cf. [5])
Let k be a field of characteristic zero. The
algebra of differential operators on the poly-
nomial k-algebra k[x1, . . . , xn], is the n-th
Weyl algebra:

D(k [x1, .., xn]) ≃ An (k) .

3 Algebra of differential
operators on Laurent
polynomials ring

Let L = k
[
x±1

1 , .., x±1
n

]
be a Laurent poly-

nomials ring with n variables over a field k
and I an ideal of L.

3.1 Equality of two differential
operators on a Laurent
polynomials ring

In this paragraph, we determine a sufficient
condition so that two differential operators
of the same order on the ring of Laurent
polynomials are equal.

Lemma 1. Let m ∈ N.
If u ∈ Dm(L) such that, for all a ∈ V m,
u (a) ∈ I, then

∀b ∈ V m−1, ∀i ∈ 1, n, [u, xi] (b) ∈ I.

Proof. Indeed for u ∈ Dm(R) such, that
for all a ∈ V m, u (a) ∈ I and all b ∈ V m−1,
we have

u (xib) ∈ I, ∀i ∈ 1, n

because xib ∈ V m and I is an ideal of R.
So,

∀i ∈ 1, n, [u, xi] (b) = u (xib) − xiu (b) ∈ I.

Lemma 2. Let u, v ∈ D(L). If u+ = v+,
then for all ℓ ∈ L+, [u, ℓ]+ = [v, ℓ]+.

Proof. Let u, v ∈ D(L) such that u+ = v+,
and ℓ1, ℓ2 ∈ L+. We have

([u, ℓ1]) (ℓ2) = u (ℓ1ℓ2) − ℓ1u (ℓ2) .

Yet u+ = v+ and ℓ1ℓ2 ∈ L+. So,

(
[u, ℓ1]+

)
(ℓ2) = v (ℓ1ℓ2)−ℓ1v (ℓ2) = ([v, ℓ1]) (ℓ2) .

And we have [u, ℓ1]+ = [v, ℓ1]+

Proposition 3.1. Let u, v ∈ Dm(L).
If u+ = v+, then u = v.
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Proof. Let u, v ∈ Dm(L) such that u+ = v+
and let α ∈ Zn.

a) For α ∈ Nn, we have u (xα) = v (xα)
because u+ = v+.

b) Let α ∈ (Z−)n . We show by induction
on the order m that u (xα) = v (xα) .

i) Let m = 0. As u+ = v+, so
u (1) = v (1) . Yet u (xα) =
xαu (1) and v (xα) = xαv (1) ,
hence the equality u (xα) =
v (xα) .

ii) Induction hypothesis 0 (IH0):
Let (s, m) ∈ N × N∗ such that
s ≤ m. If u, v ∈ Ds(L) such that
u+ = v+, then u (xα) = v (xα) .

Let us show that if u, v ∈
Dm+1(L) such that u+ = v+,
then
u (xα) = v (xα) .
Let u, v ∈ Dm+1(L) and ℓ ∈ L+.
According to lemma 2, we have
[u, ℓ]+ = [v, ℓ]+ . Yet

[u, ℓ] , [v, ℓ] ∈ Dm(L).

So, [u, ℓ] (xα) = [v, ℓ] (xα) accord-
ing to (IH0). Taking ℓ = x−α,
we get

[u, x−α] (xα) = [v, x−α] (xα) ,

which means that

u (1)−x−αu (xα) = v (1)−x−αv (xα) .

Since u (1) = v (1), so

u (xα) = v (xα) .

Consequently, if u, v ∈ Dm(L) such
that u+ = v+, then

∀α ∈ (Z−)n , u (xα) = v (xα) .

c) Let α /∈ (Z−)n ∪Nn. In this case, there
are α1 ∈ (Z−)n and α2 ∈ (N)n such
that α = α1 +α2. According to lemma

2, [u, xα2 ]+ = [v, xα2 ]+ . Therefore, we
deduce from b) that

[u, xα2 ] (xα1) = [v, xα2 ] (xα1) .

In the same case, we have

u (xα1) = v (xα1)

because u+ = v+. Yet

u (xα) = u (xα1xα2)
= [u, xα2 ] (xα1) + xα2u (xα1) ,

thus

u (xα) = [v, xα2 ] (xα1) + xα2v (xα1)
= v (xα1xα2) = v (xα) .

So,

∀α /∈ (Z−)n ∪ Nn, u (xα) = v (xα) .

We conclude from these 3 cases, that for all
ℓ ∈ L, u (ℓ) = v (ℓ) , so u = v.

Proposition 3.2. Let m ∈ N.
If u ∈ Dm(L) such that u (V m) ⊆ I, then
u(L+) ⊆ I.

Proof. Let us remember that
L+ = k [x1, .., xn] . Let u ∈ Dm(L) such that

u (V m) ⊆ I (∗∗) .

Show by induction on the order m that for
all ℓ ∈ L+, u(ℓ) ∈ I.

1) m = 0.
u ∈ D0 (L) if and only if for all
ℓ ∈ L+, u (ℓ) = ℓu (1L) . Yet u (1L) ∈
I (according to condition (∗∗)) and I
is an ideal, so for all ℓ ∈ L+, u(ℓ) ∈ I.

2) Induction hypothesis 1 (IH1):
Let s ∈ N and m ∈ N∗ such that
s < m. If u ∈ Ds(L) such that
u (V s) ⊆ I, then u(L+) ⊆ I.
Let us show that if u ∈ Dm(L) such
that u (V m) ⊆ I, then u(L+) ⊆ I.
Suppose u ∈ Dm(L) such that
u (V m) ⊆ I and α ∈ Nn. We prove
that u(xα) ∈ I.
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a) For |α| ≤ m, this is verified
thanks to (∗∗) .

b) Let |α| > m. By induction on
|α|, we have:

i) Suppose |α| = m + 1. Then,
there are α′ ∈ Nn with |α′| =
m and i ∈ 1, n such that
xα = xix

α′
. By lemma 1, for

all b ∈ V m−1, [u, xi] (b) ∈ I.
Yet

[u, xi] ∈ Dm−1 (L) .

Therefore, the hypotheses of
(IH1) are verified for [u, xi] ,
that is

[u, xi] ∈ Dm−1 (L)

and

b ∈ V m−1, [u, xi] (b) ∈ I.

By (IH1) , we have

∀ℓ ∈ L+, [u, xi] (ℓ) ∈ I.

In particular, [u, xi]
(
xα′
)

∈
I. Yet, u

(
xα′
)

∈ I because
|α′| = m and we are in case
1, and I is an ideal. So

u(xα) = [u, xi]
(
xα′)+xiu

(
xα′) ∈ I.

ii) Induction hypothesis 2
(IH2):
Let t, q ∈ N such that
t > m + 1 and q ≥ m + 1.

If q < t and |α| = q, then
u(xα) ∈ I.

Let us show that:
if |α| = t then u(xα) ∈ I.

Let α ∈ Nn such that |α| =
t. In this case, there is i ∈
1, n and α′ ∈ Nn with |α′| =
t − 1 such that xα = xix

α′
.

By lemma 1, for all b ∈
V m−1, [u, xi] (b) ∈ I. Yet
[u, xi] ∈ Dm−1 (L) . There-
fore, the hypotheses of (IH1)
are verified for [u, xi] , that
is

[u, xi] ∈ Dm−1 (L) and
b ∈ V m−1, [u, xi] (b) ∈ I.

By (IH1) , we have

∀ℓ ∈ L+, [u, xi] (ℓ) ∈ I.

In particular [u, xi]
(
xα′
)

∈
I. Since |α′| < t, then
u
(
xα′
)

∈ I (by (IH2)) .
Hence

u(xα) = [u, xi]
(
xα′)+xiu

(
xα′)

.

So,

∀α ∈ Nn, u(xα) ∈ I.

Therefore,

∀ℓ ∈ L+, u(ℓ) ∈ I.

It follows that for s = m, if
u ∈ Dm(L) such that u (V m) ∈
I, then for all ℓ ∈ L+, u(ℓ) ∈ I.

Consequently, for m ∈ N, if u ∈ Dm(L) such
that u (V m) ∈ I, then u(L+) ⊆ I.

Corollary 3.1. Let m ∈ N.
If u ∈ Dm(L) such that u (V m) ⊆ (0) , then
u+ = 0End(L+).

Proof. By setting I = (0), we deduce from
Proposition 3.2 that for all ℓ ∈ L+, u(ℓ) = 0.
It follows that u+ = 0End(L+).

Corollary 3.2. Let m ∈ N.
If u, v ∈ Dm(L) such that for any a ∈ V m,
u (a) = v (a) , then u+ = v+.

Proof. By setting d = u − v, we get that
d ∈ Dm(L) and

∀a ∈ V m, d (a) ∈ (0) .

By Corollary 3.1, we have d+ = 0End(L) and
u+ = v+.

Corollary 3.3. Let m ∈ N and u, v ∈
Dm(L) .
If for all a ∈ V m, u (a) = v (a) , then u = v.
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Proof. Suppose that

∀a ∈ V m, u (a) = v (a) .

According to the Corollary 3.2, u+ = v+.
Therefore, we deduce from the Proposition
3.1 that u = v.

This "sufficient condition" (cf. Corollary
3.3) is the key that will allow us to deter-
mine exactly the algebra of the differential
operators on the Laurent ring.

3.2 k is a zero characteristic
field

Thanks to the sufficient condition obtained
above, we show that, contreatment to the
ring of polynomials, the algebra of differen-
tial operators on Laurent polynomials ring
contains a Weyl algebra as indicated by the
following theorem.

Theorem 3.4. Let k be a zero characteristic
field. The algebra of differential operators
on a Laurent polynomials ring L is

D(L) = k
[
x±1

1 , . . . , x±1
n , ∂1 , . . . , ∂n

]
= L [∂1 , . . . , ∂n ] .

Proof. Let α = (α1, . . . , αn) ∈ Nn and
|α| =

n∑
s=1

αi.

1) Let us show that

k
[
x±1

1 , . . . , x±1
n , ∂1 , . . . , ∂n

]
⊂ D(L).

By Proposition 2.2,

D1(L) = L ⊕ Derk (L) ,

so for all i ∈ 1, n, ∂i ∈ D1(L). Yet
for all f ∈ Dp(L) and g ∈ Dq(L),
f ◦ g ∈ Dp+q(L), so any element h of
L [∂1, . . . , ∂n] of the form ∑

|α|≤m ℓα∂α,
is a differential operator on L of or-
der m. Therefore, any element of
L [∂1, . . . , ∂n] is a differential operator
on L. Hence,

L [∂1, . . . , ∂n] ⊆ D(L).

2) Let us show that D(L) ⊆
L [∂1, . . . , ∂n] . The method consists
in showing that, for all d ∈ Dm(L),
we can construct d′ ∈ L [∂1, . . . , ∂n]
such that for all ℓ ∈ L, d′ (ℓ) = d (ℓ) .
Let m ∈ N, d ∈ Dm(R) and let us
show that d ∈ L [∂1, . . . , ∂n]. Suppose
d′ = ∑

|α|≤m ℓα∂α such that

∀a ∈ V m, d′(a) = d(a).

This equality leads to a triangular sys-
tem which allow to express the un-
knowns ℓα according to d(xα) where
|α| ≤ m. Thus, we have constructed
d′ ∈ Dm(L) such that

∀a ∈ V m, d′(a) = d(a).

We deduce from Corollary 3.3 that
d = d′ and it follows that

d =
∑

|α|≤m

ℓα∂α ∈ L [∂1, . . . , ∂n] ,

hence

Dm(L) ⊂ L [∂1, . . . , ∂n] .

According to 1) and 2), we have

D(L) = L [∂1, . . . , ∂n] .

Remark 3.1. Let n ∈ N∗.

D (k [x1, . . . , xn]) = An (k) ⊆ D(L).

3.3 k is a nonzero character-
sitic field.

k is a field of characteristic p > 0 .

Definition 3.1. Let m ∈ N, i ∈ 1, n and
α = (α1, . . . , αn) ∈ Zn. We define the fol-
lowing map:

d
[m]
i : L −→ L∑

α∈Zn

aαxα 7−→
∑

α∈Zn

aα
∂m

i (xα)
m! .

Proposition 3.3. Let i ∈ 1, n. For all
m ∈ N, d

[m]
i ∈ Dm(L).
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Proof.

1) As d
[m]
i = ∂m

i

m! and ∂m
i ∈ Endk (L) , so

d
[m]
i ∈ Endk (L) .

2) Let ℓ ∈ L. We have
[
d

[m]
i , ℓ

]
=
[

∂m
i

m! ℓ

]
= 1

m! [∂m
i , ℓ] .

Yet [∂m
i , ℓ] ∈ Dm−1(L) because

∂m
i ∈ Dm(L), so

∀ℓ ∈ L,
[
d

[m]
i , ℓ

]
∈ Dm−1(L).

It follows that d
[m]
i ∈ Dm(L).

Theorem 3.5. Let m ∈ N. The algebra of
differential operators on Laurent polynomi-
als ring L is

D(L) = k[x±1
1 , . . . , x±1

n , . . . , d
[m]
i , . . . ]

= L
[
. . . , d

[m]
i , . . .

]
, ∀i = 1, . . . , n.

Proof. Let α = (α1, . . . , αn) ∈ Nn and
|α| =

n∑
s=1

αi.

1) Let us show that

L
[
. . . , d

[m]
i , . . .

]
⊆ D(L).

Let

h =
∑

|α|≤m

ℓαd[α] ∈ L
[
. . . , d

[m]
i , . . .

]
.

According to Proposition 3.3,
d

[m]
i ∈ Dm(L), so for all α ∈ Nn such

that |α| = m, we obtain d[α] ∈ Dm(L),
therefore h ∈ Dm(L). It follows that

L
[
. . . , d

[m]
i , . . .

]
⊆ D(L).

2) Let us show that

D(L) ⊆ L
[
. . . , d

[m]
i , . . .

]
.

Let m ∈ N, h ∈ Dm(L) and
h′ = ∑

|α|≤m ℓαd[α] such that

∀v ∈ V m, h′(v) = h(v).

This condition leads to a triangular
system which allow to express the un-
knowns lα according to h(xα) where
|α| ≤ m.
Thus, we have constructed h′ ∈ Dm(L)
such that

∀a ∈ V m, d′(a) = d(a).

We deduce from Corollary 3.3 that
h = h′. It follows that

h ∈ L
[
. . . , d

[m]
i , . . .

]
,

hence

Dm(L) ⊆ D(L) ⊆ L [. . . , dm
i , . . . ] .

By 1) and 2), we have

D(L) = L [. . . , dm
i , . . . ] .
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Appendix

Notation 1. Let α = (α1, . . . , αn) ∈ Nn

and |α| =
n∑
i

αi. We denote by:

1) x = (x1, . . . , xn) .

2) xα = xα1
1 . . . xαn

n .

3) For all i = 1, . . . , n, ∂i = ∂

∂xi

and

∂α = ∂α1
1 . . . ∂αn

n .

4) d[α] = d
[α1]
1 . . . d[αn]

n .

5) For all m ∈ N, V m the vector space
generated by all the xα with |α| ≤ m.

6) L+ = k [x1, . . . , xn] .

7) For all u ∈ Endk (L) , u+ the restric-
tion of u on L+.
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