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1 Introduction

In the sequel, L = k [xF%, ..., XY
denotes  the ring of Laurent

polynomials with n variables over a field
k and [ an ideal of L. Differential
operators on a given A-module M, were
introduced in 1967 by Grothendieck [1].
Some authors have studied the algebra of
differential operators on a given algebra.
This is the case of Uma Lyer [2] and
William Nathaniel [3] who determined
differential

operators on Hoph algebras and on

exactly the algebra of
Stanley-Reisner rings, respectively. As far
as we are concerned, we determine exactly
the algebra of differential operators on

Laurent polynomials rings, introduced in

*Corresponding author:

1943 by the
Alphonse Laurent. In doing so, our work

mathematician Pierre
is divided into two parts. We devote the
first section to the definitions, the
of differential

remarkable properties

operators and the ring of Laurent
polynomials. In the second section, we
determine first a sufficient condition so
that two differential operators on a
Laurent polynomials ring are equal
(Corollary 3.3). And then, we determine
thanks to this

condition, the algebra of differential

exactly, sufficient

operators on L when the characteristic
of the field k is zero (Theorem 3.4).
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Finally we define in nonzero characteristic,
an infinite family of differential operators
on L which will generate the algebra of
differential operators on L (Theorem 3.5).

For the notations used in this paper see
Appendix.

2 Ring of Laurent
polynomials: Algebra
of differential opera-
tors

2.1 Laurent polynomials ring

Definition 2.1. Let R be a commutative
ring.

A Laurent polynomial with coefficients in R
is an expression of the form :

p(z) = Z apx®, ap € R

kEZ

where only a finite number of the coefficients
ay are different from 0.

The set of Laurent polynomials with

coefficients in a commutative ring R is de-
noted R [z,z7'] or R[z*!]. This set is pro-
vided with a ring structure with the same
operations as the ring of polynomials over R,
where summation index could take negative
values.
In particular, the Laurent polynomials ring
is obtained by localization of the ring of
polynomials. The multiplicative part of this
localization is S = {2",n € N}. Therefore,
we have the following operations:

Q) (Z ax) + (Z bx) =D (a; + by) x;

7

i) (Z a:c) | (; bjxj) _ Z( S a

kE \ijiti=k

and the natural structure of R-module al-

lows to define the multiplication by a scalar

a Z apxt = Z aapx”.

keZ keZ
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Laurent’s polynomials can be general-
ized easily to several indeterminates, the
correspon-

ding ring being denoted R [xfl} :

Properties 1.

1) R|[x] is a subring of R[x*'] wich is a
subring of the ring of rational fractions
R(z).

2) The ring R[x*'] is a Noetherian ring
but not an Artinian one.

3) If k is a field, then k[z*!] is an Eu-
clidean ring (as localized of k(x)).

Definition 2.2. (Derivations on Laurent
polynomials ring).
Let R be a zero characteristic field.

1) A derivation on R {x;ﬂ} is:

0 Z loyx® — Zaiﬁaxf‘i_l.
acZm™ i
2) Any derivation on R {xlﬂ] is in the
form Z&&-, foralll; € R {:czﬂ] .

2.2 Algebra of differential
operators on a commuta-
tive algebra

Definition 2.3. (Differential operators).
Let A be a commutative algebra over a field
k, and let M and N be left A-modules. The
set of differential operators from M to N is
defined inductively by :

D4(M, N) :nLGJNDZ(M, N),
where

DY(M,N) = Hom (M, N)
and for n € N*,

DY (M,N) ={u € Homy(M,N) :
[u,a] = ua — au € D3 (M, N),
Va € A}.
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ua and au are elements of Homy(M, N)
defined by:

VYm € M, ua(m) = u(am) and au(m)
a(u(m)).

Any element u € D} (M, N) is called differ-
ential operator of order n from M to N.

Definition 2.4. (Algebra of differential op-
erators).

Let A be a k-algebra and let M be an A-
module. When M = N = A, the algebra
D4(A) that we will denote D(A), is called
the algebra of differential operators on A.

Properties 2.
1) Endi(A) is a (A, A)-bimodule.
2) Endi(A) is a (D(A), D(A))-bimodule.

3) Let n > 0 be an integer, D"(A) is a
(A, A)-subbimodule of Endi(A).

4) D(A) is a (A, A)-subbimodule of
Proof.

1) We know that Endi(A) is an additive
group.

a) Let ¢1, 2 be the following ap-
plications:

o1 (a,u) — au
and
2! :

(u,a) — ua

We deduce from ¢; (respectively
from ), that Endi(A) is a left
A-module (respectively a right
A-module).

b) In addition, for all @ € A and all
u,v € Endg(A), we have:

(ua) ov =wo (av).
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As a result, according to a) and b),
Endi(A) is a (A, A)-bimodule.

2) Let us show that Endg(A) is a
(D(A), D(A))-bimodule.

a) Let @3, ¢4 be the following ap-
plications:

s (u,v) —> uow

and

o Endi(A) x D(A) — Endi(A)
4 . .

(v,u) —>vou

We deduce from 3 (respectively
from ), that Endp(A) is a
left D(A)-module (respectively a
right D(A)-module).

b) For all vy, vy € Endi(A) and all
u € D(A), we have:

(uowy)owvy =wuo(vy0uvy).

According to these two points,
Endi(A) is a (D(A), D(A))-bimodule.

3) Let n > 0 be an integer and show
that D"(A) is a (A, A)-subbimodule
of End(A).

a) We show by induction on the or-
der n, that D"(A) is a subgroup
of End(A). We have:

’L) OEndk(A) c Dn(A) and
D"(A) C Endg(A).
i1) Let u,v € D"(A).
e For n =0, we have
u —v € DY(A) because
DY(A) = Enda (A).
e Induction hypothesis.
Let n € N*and ¢ € N
such that ¢ < n. Ifu,v €
Di(A), then u — v €
Di(A).
e Suppose u,v € D"(A) and
let show that
u—v € D"(A).
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We have

u,v € D"(A) <~
{ [u,a] € D""1(A),Va € A

[v,a] € D"1(A),Va € A

We deduce by induction
hypothesis that:

[u —wv,a] = [u,a] — [v,a]
€ D" 1(A),Va € A,

Yet
D"(A) ={w € End(A),
[w,a] € D" (A)},

thus u —v € D*(A).
We conclude that for all n €
N and all u,v € D"(A),

u—v e D"(A).

From i) and i), we deduce that
for all n € N, D"(A) is a sub-
group of Endy(A).

b) Let a,b € A and u € D"(A). We

have
[au, b] = alu, b].
Yet u € D"(A), thus
[au, b] = alu,b] € D" (A),

wich means that au € D"(A). So,

V(a,n) € AxN,
aD"(A) C D™(A).

c¢) Likewise we show that

¥ (a,n) € AxN, D"(A)a C D"(A).

Therefore, from 3.a), 3.b) and 3.c¢), we
deduce that for all n € N, D"(A) is a
(A, A)-subbimodule of Endy(A).

4) Let us show that D(A) is a (A, A)-
subbimodule of Endy(A).
Let a € A, u € D(A) .
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a) D(A) is a subgroup of Endy(A)
because for all n € N, D"(A) is
a subgroup of Endy(A).

b) u € D(A) is equivalent to there
exists n € N such that u €
D"(A). So, by 3.b) and 3.c), we

have

Vn €N, au € D(A) and
ua € D(A).

From 4.a) and 4.b), D(A) is a (A, A)-
subbimodule of Endy(A).

Proposition 2.1.

1) idy € D(A) and D°(A) is identified to
A by

0: A— DA)
ar— ¢

such that
Ve € A, ¢q(z) = ax.
2) D"(A) C D""(A), for alln € N.

3) D™(A).D*(A) C D™ (A), for all
m,n € N.

1) [D™(A), D (A)] C D™ (A), for al
m,n € N.

5) D™(A) + D"(A) C DMastmad (A), for
all m,n € N.

6) D(A) is a subalgebra of Endy(A).

Proof.

1) It is known that idys € Ends(A).
Yet D(A) = Enda(A) and D°(A) C
D(A), thus idy € D(A). Let us show
that DY(A) is identified to A.
Consider u € DY(A) and a € A. Then
ua,au € D°(A) because D°(A) is a
(A, A)-bimodule. Let

¢ :A— D(A)
Tt A— A
a— xa
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be a morphism. We have:

u € DY(A) <= [u,7] = ur — zu

= OEndk(A),\V/l’ € A.

So,
Va € A, u(za) = zu(a) = zau(ly), ()
wich means that

Va € A, uop.(a) =y, ou(a).
In particular, for a = 1, (*) becomes
Ve e A, u(x) =au(la) = pua ().
So, u = y1,), that is for any el-
ement u € DY(A), identifies with

a multiplicative morphism ¢, where
b= u(l A) € A

2) Let us show by induction that:

D"(A) C D"(A), VneN.
i) For n =0, we have
D (A) = Enda(A) C Endi(A).

Let u € DY(A) and (a,z) € A%
We have:

[u,a] (x) = u(ax) — au ()

=au(x) —au(x)=0

(u(ax) = au (z) because u € Enda(A)).

So,
Va € A, [u,a] € D°(A).
Yet

D' (A) = {u € Endy(A) :
[u,a] € D°(A),Va € A},

thus D°(A) C DI(A).

i7) Induction hypothesis.

Let n € N*and ¢ € N. If 0 <
q < n, then DI(A) C DIT1(A).
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iii) Let show that D"(A) C
'Dn'H(A).
Consider u € D"(A). That is
equivalent to

u € Endi(A) and
[u,a] € D""(A),Va € A.

By Induction hypothesis we have
Dn1(A) C D*(A). So,

[u,a] € D"(A), Vae€ A.
Yet

D" (A) ={u € Endy(A) :
[u,a] € D"(A),Va € A},

thus u € D""1(A) and we obtain
D"(A) C DFL(A).

Conclusion : D"(A) C D"t(A), Vn €
N.

3) Let us show by induction on r = m+n
that:

D™(A).D"(A) C D™ (A), Vm,n € N.
i) For r = m = n = 0, we have
D°(A).D°(A) C D°(A) because
DY(A) = Enda(A).
i1) Induction hypothesis.

Let n € N* and r,s;t € N. If
0 <r < n where r = s+, then

D*(A).D'(A) C D'(A).

iii) Let us show that for r = n =
s+t, D°(A).D'(A) C D*(A).
Let u € D*(A), v € D(A) and
a € A. Obviously, uowv €
Endy(A) and we have

[uow,al =wuolv,al+ [u,a]owv,
yet [u,a] € DS"1(A) and

[v,a] € D'"'(A). Thus, by In-
duction hypothesis we have :

uo [v,a] € DT A)
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and
[u,a] ov € D*H1(A).
Therefore,
Va € A, [uov,a] € D1 (A) = D" 1(A).

It follows that uov € D"(A), so
D*(A).D'(A) C D*(A).

We conclude that:

D"(A).D"(A) C D™ (A),¥m,n € N.

4) Let us show by induction that

[D™(A), D"(A)] € D" 1(A), Vm,n € N,

with Dil(A) = {OEndk(A)}

i) Let m = n = 0 and w,v €

i)

iii)

D°(A). We have [u,v] =uov —
vou € DY(A) because D°(A) =
EndA(A) SO,

Va € A,[[u,v],a] = Opna,(a) € D7H(A).
We obtain then

[D°(A),D°(A)] C D '(A).

Induction hypothesis.

Consider s € N* and m,n,r € N
such that r = m +n. If 0
r < s, then [D™(A), D"(A)]
DL(A).

Let us show that for r

s, we have [D™(A),D"(A)]
DsL(A).

Let (u,v) € D™(A) x D*(A) and
a € A. We have

(N IA

(Nl

[a7 [uv UH + [U7 [CL, u“ + [uv [U7 CLH =
0 (Jacobi relation).

So,
Hu>v]7 CL] - [Uv [a7u]] + [u7 [U7 CLH

= —v, [u,al] + [u, [v, al].
Yet
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[u,a] € D™"1(A) and
[v,a] € D"1(A), Va € A,

thus, by induction hypothesis, we
have:

{ [v, [u,a]] € D™ 72(A),Va € A
[u, [v,a]] € D™ 2(A),Va € A °

because m+n—1 < s. It follows
that

[[u,v],a] € D™ 2(A), Va € A,
which means that

[u,v] € D" (A) = DTH(A).
Consequently, for all m,n € N,
[D™(A), D"(A)] € D™ H(A).

5) Let us show by induction that:

D™(A)+D"(A) C DMa{mn}(4) Vm,n € N.

i)

i)

i)

For m = n = 0, we have:
D°(A) 4+ D°(A) C D°(A)
due to the fact that
D(A) = Enda(A).

Induction hypothesis.
For all s € N* and all (m,n) €
N2, if 0 < m,n < s, then

Dm(A) + Dn(A) C Dmax{m,n}'
Let us show that
D™(A) + D"(A) C D*(A)

with s = max{m, n}. Consider
a € A and (u,v) € D"(A) x
D" (A). We have

[u+v,a] = [u,a] + [v,al.
Yet
[u,a] € D™ (A) and [v,a] € D" (A),

thus, by induction hypothesis we
have :

[u+wv,a] € DM“x{m_l’"_l}(A).
Yet max{m — 1,n —1} = s — 1,
sou+uv € D3(A).
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It follows that for all m,n € N,

Dm(A) + Dn(a) g rDMax{m,n}(A>

6) According to 1), 2) and 3), D(A) is a
subring of Endy(A). In addition, for
all « € k, aD(A) C D(A). So, the sub-
ring D(A) is a subalgebra of Endy,(A).

Proposition 2.2. (cf. [4])
For all k-algebra A, DY(A) = A® Dery(A).

2.3 Weyl algebra

Definition 2.5. The n-th weyl algebra is an
associative, unitary and non-commutative
algebra, generated by 2n elements x1, ..., x,
and Yi,...,Yn, that satisfy the following
defining relations:

1) [z, 25] = [yi,y5] = 0;

2) lyi,x;] = 6i;, where 0;; is the Kro-
necker delta for alli,j5 € {1,...,n}.

The n-th weyl algebra is denoted A, (k).

The following proposition shows that in
characteristic zero, the algebra of differen-
tial operators on a polynomial algebra is a
Weyl algebra.

Proposition 2.3. (cf. [5])

Let k be a field of characteristic zero. The
algebra of differential operators on the poly-
nomial k-algebra k[xy, ..., xz,)], is the n-th
Weyl algebra:

D(k[xq,..,z,]) ~ A, (k).

3 Algebra of differential
operators on Laurent
polynomials ring

Let L =k {a:fl,. xﬂ} be a Laurent poly-

. n

nomials ring with n variables over a field k
and I an ideal of L.

Vol. 7, n° 2 (2023) 132-143

3.1 Equality of two differential
operators on a Laurent
polynomials ring

In this paragraph, we determine a sufficient
condition so that two differential operators
of the same order on the ring of Laurent
polynomials are equal.

Lemma 1. Let m € N.
If u € D™(L) such that, for all a € V™,
u(a) € I, then

Voe V™l VieTn, [u,x)(b) €l

Proof. Indeed for u € D™(R) such, that
foralla € V™, u(a) € [ and all b € V™!,
we have

u(zb) eI, Vieln

because x;b € V™ and [ is an ideal of R.

So,
Vie In, [u,z)(b) =u(zb) —xu(b) € 1.

Lemma 2. Let u,v € D(L). If uy = vy,
then for all £ € L, [u, (], = [v,{],.

Proof. Let u,v € D(L) such that u, = vy,
and (1,0, € L. We have

([u, 01]) (£2) = u (€102) — lyu (L2) .

Yet u, = vy and (105 € L. So,

([ 1) (€2) = v (E2a) =10 (£) = ([v, 02]) (fa) -

And we have [u, (1], = [v, /1],

Proposition 3.1. Let u,v € D™(L).
If uy = vy, thenu =v.
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Proof.  Letu,v € D™(L) such that uy = v,
and let o € Z™.

a) For o € N, we have u (z) = v (z%)
because u; = vy.

b) Let a € (Z_)". We show by induction
on the order m that u (z) = v (z%) .

i) Let m =0. As uy = vy, so
u(l) = v(l). Yet u(z®) =
z%u (1) and v(z%) = z% (1)
hence the equality u(z%)
v (z%).

i1) Induction hypothesis 0 (IHO):

Let (s,m) € N x N* such that
s <m. If u,v € D*(L) such that
uy = vy, then u (z%) = v (z%).
Let us show that if w,v €
D™H(L) such that u, = v,
then

u(z®) =v(z%).

Let w,v € D™ (L) and £ € L,.
According to lemma 2, we have
[u,l], = [v, ], . Yet

[u, f] , [v, 0] € D™(L).

So, [u, f] () = [v, £] (x*) accord-
ing to (IHO). Taking ¢ = 2™,
we get

[, 7] (%) = [v,27°] (%) ,

which means that

u(l)—z %u (z%) = v (1)—z % (z%).

Since u (1) = v (1), so

Consequently, if u,v € D™(L) such
that uy = vy, then

Va € (Z-)" ,u(x®) = v (x%).

¢) Let a ¢ (Z_)"UN". In this case, there
are a1 € (Z_)" and ay € (N)" such
that @ = a; + 3. According to lemma
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2, [u,v*?] | = [v,2°?], . Therefore, we
deduce from b) that

[, () = [v,2°7) (21) .
In the same case, we have

u(z) = v (x)
because u, = v,. Yet

u(z®) = u (M z?)

= [u, ] (") + 2%u (z*),
thus

w(x®) = [v, 2] (%) + %% ()

= (x%2?) = v (z9).
So,
Vao & (Z_)"UN", wu(z®) =v(x%).

We conclude from these 3 cases, that for all
el ,u(l)=v(l),s0u=n0v.

Proposition 3.2. Let m € N.
If w € D™(L) such that w (V™) C I, then

Proof. Let us remember that
Ly =klzy,..,2,). Let w € D™(L) such that

u(V™) CI (xx).

Show by induction on the order m that for
all ¢ € Ly, u(l) € 1.

1) m=0.
u € D’ (L) if and only if for all
e L, u(l)="»lu(ly). Yet u(ly) €
I (according to condition (%)) and I
is an ideal, so for all £ € L, u(¢) € I.

2) Induction hypothesis 1 (IH1):
Let s € N and m € N* such that
s < m. If uw € D(L) such that
uw(V?®) C I, then u(L;) C I.
Let us show that if v € D™(L) such
that u (V™) C I, then u(Ly) C I.
Suppose u € D™ (L) such that
w (V™) C I and o € N". We prove
that u(z®) € I.
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a) For |a] < m, this is verified
thanks to ().

b) Let || > m. By induction on

|,

i)

i)

we have:

Suppose |a| = m + 1. Then,
there are o € N" with |o/| =
m and ¢ € 1,n such that
* = z;2% . By lemma 1, for
all b € V=l [u, ;] (b) € 1.
Yet

[u,z;] € D" (L).

Therefore, the hypotheses of
(IH1) are verified for [u, z;],
that is

[u,z;] € D™ (L)
and
be V" [u,x) (b) € L.
By (IH1), we have
Vle Ly, [ux]()el.
In particular, [u,z;] (xa/) €
1. Yet, u (Jc""

|a/| = m and we are in case
1, and [ is an ideal. So

u(z®) =

) € I because

Induction  hypothesis 2
(IH2):
Let t,q € N such that
t>m+1and ¢g>m+1.
If g < tand |a| = ¢, then
u(z®) € 1.
Let us show that:
if |a|] =t then u(z®) € I.
Let o € N” such that |o| =
t. In this case, there is ¢ €
I,n and o € N* with |o/| =
t — 1 such that z® = z;z%.
By lemma 1, for all b €
vm=t u,z) (b)) € I. Yet
[u,z;] € D™ ' (L). There-
fore, the hypotheses of (IH1)
are verified for [u,x;], that
is

[u, x;] (:Ua/)—i-a:iu (xa/) el
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[u,z;] € D™ (L) and
beVmt [u,z;] (b) € 1.
By (IH1), we have

Vee Ly, [ux](l)€

then

2)).

I. Since |o/| <

In particular [u, x;] (
t,
u(wa/) e [ (by(IH

Hence
u(z®) = [u, 2] (ma/)—l—xiu (xa/> :
So,

Va e N, wu(x®) € I.
Therefore,

Vle Ly, ul)el.

It follows that for s = m, if
u € D™(L) such that u (V™) €
I, then for all £ € Ly, u(() € I.

Consequently, for m € N, if u € D™ (L) such
that u (V™) € I, then u(Ly) C I.

Corollary 3.1. Let m € N.
If u e D™(L) such that uw (V™) C
Uy = Opna(Ly)-

(0), then

Proof. By setting I = (0), we deduce from
Proposition 3.2 that for all ¢ € L, u(¢) = 0.
It follows that uy = Ogpg(r.)-

Corollary 3.2. Let m € N.
If u,v € D™(L) such that for any a € V™,
u(a) =wv(a), then uy = v,.

Proof. By setting d = u — v, we get that
d € D™(L) and

Va e V™ d(a) € (0).

By Corollary 3.1, we have d; = Ogyq(r) and
Uy = Vg

Corollary 3.3. Let m € N and u,v €

D"(L) .

If for alla € V™, u(a) = v (a), then u = v.
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Proof. Suppose that
Vae V™ wu(a)=v(a).

According to the Corollary 3.2, u, = v,.
Therefore, we deduce from the Proposition
3.1 that u = v.

This "sufficient condition" (cf. Corollary
3.3) is the key that will allow us to deter-
mine exactly the algebra of the differential
operators on the Laurent ring.

3.2 k is a zero characteristic
field

Thanks to the sufficient condition obtained
above, we show that, contreatment to the
ring of polynomials, the algebra of differen-
tial operators on Laurent polynomials ring
contains a Weyl algebra as indicated by the
following theorem.

Theorem 3.4. Let k be a zero characteristic
field. The algebra of differential operators
on a Laurent polynomials ring L is

D(L) =k [ai',...2f,0,,...,0,]

) n

~L[d,,....0].

Proof. Let a = (aq,...,a,) € N and

lal = X ;.
s=1
1) Let us show that

ko', 23%0,...,0,] ¢ D(L).

) n

By Proposition 2.2,
DY(L) = L @ Dery, (L),

so for all i € T,n, d; € D'(L). Yet
for all f € DP(L) and g € DI(L),
foge DP(L), so any element h of
L0y, ..., 0,] of the form 3, <., £0 0%,
is a differential operator on L of or-
der m. Therefore, any element of
L [0y, ...,0,] is a differential operator
on L. Hence,

L[oy,....0,] C D).
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2) Let wus show that D(L) C
L[0,...,0,]. The method consists
in showing that, for all d € D™(L),
we can construct d € L[0y,...,0,)
such that for all ¢ € L, d' (¢) =d (0).
Let m € N, d € D™(R) and let us
show that d € L [0y, ...,0,]. Suppose
d' = Yjaj<m Lo such that

Va e V™, d'(a) = d(a).

This equality leads to a triangular sys-
tem which allow to express the un-
knowns ¢, according to d(x®) where
la| < m. Thus, we have constructed
d' € D™(L) such that

Vae V™ d(a)=d(a).

We deduce from Corollary 3.3 that
d = d' and it follows that

d= Z gaaaeL[ala'-wan]?

|| <m
hence

D™(L) C L[dy,...,0,].

According to 1) and 2), we have
D(L)=L[b,...,0].
Remark 3.1. Let n € N*.

D (k1. ... 2.]) = A, (k) C D(L).

3.3 £k is a nonzero character-
sitic field.

k is a field of characteristic p > 0 .

Definition 3.1. Let m € N, i € 1,n and
a=(a,...,a,) € Z". We define the fol-

lowing map:

AL — L
o (z®
Z A — Z aa’<:f).
aEZn aEZn m:

Proposition 3.3. Let i € 1,n. For all
meN, d™ e D(L).
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Proof.
ml _ O m
1) As d;™ = — and 9" € Endy, (L), so
m!

d"™ € Endy (L).
2) Let £ € L. We have
ar 1
[m] — {J _ m
™ ] = [mm] =~ o4
Yet [0, ¢] € D™ (L) because
om e D™(L), so

Ve e L, [d™, (] e D" (L).

It follows that dEm] e D™(L).

Theorem 3.5. Let m € N. The algebra of
differential operators on Laurent polynomi-
als ring L is

D(L) = k[, ... 2t d™ )

? n

=L|...d™ ] vi=1.n
Proof. Let o = (ay,...,qp) € N* and
lal = 3 ;.
s=1
1) Let us show that
L[...d™ . ]cDL)
Let

h= Y tudeL]  .d" . ]

la|<m

According to Proposition 3.3,

dm e D™ (L), so for all &« € N" such
that |o| = m, we obtain dl* € D™ (L),
therefore h € D™ (L). It follows that

Ll....d" .| cD(L)

2) Let us show that
D(L)CL]....d", . ]

Let m € N, h € D™(L) and
b =3 a1<m 0,d"* such that

Yo e V™ h'(v) = h(v).

Vol. 7, n° 2 (2023) 132-143

This condition leads to a triangular
system which allow to express the un-
knowns [, according to h(x®) where
la| < m.
Thus, we have constructed ' € D™ (L)
such that

Va e V™, d'(a) = d(a).

We deduce from Corollary 3.3 that
h = h'. It follows that

heL[...,dﬁm],...],
hence

D"(L)C D(L) C L|...,d",...].

By 1) and 2), we have
D(L)=L]J...,d",...].

) 7 )

References

[1] A. Grothendieck, J. Dieudonné, FElé-
ments de géométrie algébrique IV (qua-
trieme partie), Publications Mathema-
tiques I.LH.E.S. 32 (1967).

[2] Uma N. Lyer, Differential operators
on Hops algebras and some functo-
rial properties, Manuscripta math. 109,
Springer-Verlag (2002) 121-129.

[3] W. Nathaniel Traves, Differential op-
erators and Nakai’s Conjecture, A the-
seis submitted in conformity with the
requirements for the degree of Doctor
of Philosophy Graduate, Departement
of Mathematics, University of Toronto
(1998).

[4] J.C McConnell, J.C. Robson, Non-
commutative noetherian rings, Pure
and Applied Mathematics, John Wi-
ley & Sons, Chichester, UK, chapitre
15 (1987) 590 — 593.

[5] S.C. Countiho, A prime of Algebraic D-
modules, London Mathematical Society
Student Texts 33, Cambridge Univer-
sity Press (1995) 20 — 24.

Page 142 of 143



A. Sama et al./RAMReS Sciences des Structures et de la Matiére

Appendix

Notation 1. Let a = (aq,...,a,) € N"

and |a| = iai. We denote by:
1) = (z1,...,%,).

2) a* =2

3) Foralli=1,...,n, @-zi and

Vol. 7, n° 2 (2023) 132-143

9% = O .. oo,
4y dlel = gl gl

5) For all m € N, V™ the vector space
generated by all the x* with |a] < m.

6) Ly =klzy,...,x,].

7) For allu € Endy (L), uy the restric-
tion of u on L.
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