
 RAMReS Sciences des Structures et de la Matière Vol. 6, N°2 (2022) 186 - 211 
 http://publication.lecames.org/index.php/mat     

 

 

Determination of molecular descriptors influencing the first reduction 

potential of a family of Tetracyanoquinodimethane molecules at   

HF/6-31G(d,p) theory level 
 

Fatogoma Diarrassouba1, Kafoumba Bamba1,*, Mawa Koné2, K.K. Raymond Kouamé1, 

Nahossé Ziao1 

  
1Laboratoire de Thermodynamique et Physico-Chimie du Milieu (LTPCM), UFR-SFA, Université 

Nangui Abrogoua 02 BP 801 Abidjan 02, Côte d’Ivoire 
2Laboratoire de Constitution et de Réaction de la Matière (LCRM), UFR-SSMT, Université Félix 

Houphouët Boigny 22 BP 582 Abidjan 22, République de Côte-d’Ivoire 

 

 

 
Received: 28 June 2022 / Received in revised form:  27 August 2022 / Accepted:  14 September 2022 

 

Abstract: 

 In our study, we started with a series of forty (40) Tetracyanoquinodimethane (TCNQ) 

derivatives with their available experimental first reduction potentials, to develop a predictive 

QSPR (Quantitative Structure-Property Relationship) model. The model obtained relates the 

potential of the first reduction to three (03) molecular descriptors, namely the electronic 

affinity (EA), the sum of the absolute value of the Mulliken charges (Q) and the dipole moment 

(µD). This model displays very satisfactory statistical and validation parameters (R2=0.9503; 

S=0.0577; F=165.5894 ; QLOO
2 =0.9429 ; Rext

2 =0.9544 ; Qext
2 =0.9394). These different 

parameters show that the QSPR developed model is validated and performs well in the 

prediction of first reduction potential. Thus, it can be used to effectively predict the potential 

for first reduction of future TCNQ of the same family that belongs to its domain of 

applicability with 95% of confidence level. 

 

 

Keywords: Tetracyanoquinodimethane (TCNQ); First reduction potential; QSPR model. 

 

 

 

 

 

 

 

 

________ 

 

      ISSN: 2630-1180 

 

 
 

  *Corresponding author: 

  Email address: kafoumba2001@yahoo.fr (K. Bamba)  

 

http://publication.lecames.org/index.php/mat


K. Bamba et al. / RAMReS Sciences des Structures et de la Matière      Vol. 6, N° 2  (2022) 186 – 211 

  

1. Introduction 

 

 The development of plane geometry and 

conjugated-π electron acceptors is a prerequisite 

for the formation of organic charge transfer 

complexes. Many organic compounds function as 

electron acceptors in charge transfer complexes. 

Among the most common we can                    

mention p-benzoquinone and its derivatives [1, 2], 

carboxylic acid anhydrides and their halogenated 

derivatives [2] and acid chlorides [2]. However, 

the presence of the powerful cyano group, an 

electron withdrawer with high electron affinity, 

makes of the molecules containing the cyano 

group potential electron acceptors. 

Tetracyanoethylene (TCNE) was one of the first 

to be studied [3]. It has formed organic charge 

transfer complexes with a variety of electron 

donors and was the precursor of cyano-based 

electron acceptor molecules. The extension of the 

conjugation between the cyano groups of TCNE 

led to the discovery of 7,7,8,8-Tetracyano-p-

quinodimethane (TCNQ) [4,5] which is today one 

of the acceptors of electrons widely studied [6]. 

Wheland [7] reported that the electron acceptor 

must have moderate accepting power. To do this, 

he proposed that the value of the first reduction 

potential should be between -0.02 V and +0.35 V. 

Thus, the objective of this work is to develop a 

QSPR model (Quantitative Structure-Property 

Relationship) of the first reduction potential from 

a derived series from Tetracyanoquinodimethane 

(TCNQ) by ab initio methods. This model will 

therefore make it possible to explain and predict 

the first reduction potential of new derivatives of 

Tetracyanoquinodimethane (TCNQ) likely to 

have a large spatial extension. 

 

2. Material and methods 

 

2.1. Series of studied molecules 

 In the development of the predictive 

QSPR (Quantitative Structure-Property 

Relationship) model of the first reduction 

potential, we considered a series of forty 

Tetracyanoquinodimethane derivatives codified 

TCNQ [8-14]. The choice of these molecules is 

due to the availability of their experimental first 

reduction potentials. These properties have been 

all determined by cyclic voltammetry in 

acetonitrile. These molecules have constituted our 

database. Thirty (30) of which (75% of the 

database) were used for the training set and ten 

molecules (10) (25% of the database) were used 

for the test set. Table 1 presents these different 

molecules with their corresponding experimental 

first reduction potentials expressed in volts (V). 
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Table 1 

Series of studied Tetracyanoquinodimethane (TCNQ) molecules.  

Training set 

Code Molecule Eexp
1 (V)(a) Reference 

TCNQ_1 

N

N
N

N

CH3  

+0.170 [9] 

TCNQ_2 

N

N
N

N

CH3

CH3

 

+0.110 [9] 

TCNQ_3 

N

N
N

N

CH3

CH3

 

+0.120 [9] 

TCNQ_4 

N

N
N

N  

+0.012 [8] 

TCNQ_5 

NN

N N  

-0.180 [8] 

TCNQ_6 

N

N
N

NS

S

 

+0.130 [8] 

TCNQ_7 

N

N N

NS

S

 

+0.130 [8] 

TCNQ_8 

NN

N N

SS

 

-0.470 [8] 
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Table 1 (continued)  

 Training set   

Code Molecule Eexp
1 (V)(a)  Reference 

TCNQ_9 
O

N

N

O

N

N

 

-0.090 [8] 

TCNQ_10 S

N

N N

N  

+0.068 [8] 

TCNQ_11 Se

N

N N

N  

+0.03 [8] 

TCNQ_12 
Se

N

N

Se

N

N

 

-0.05 [8] 

TCNQ_13 

S

S

N

N
N

N
 

+0.058 [8] 

TCNQ_14 S

S
N

N

S

N

N

 

+0.048 [8] 

TCNQ_15 

S

N

N

S

N

N  

+0.320 [8] 

TCNQ_16 

S

N

N

S

N

N  

+0.200 [8] 
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Table 1 (continued)  

 Training set   

Code Molecule Eexp
1 (V)(a)  Reference 

TCNQ_17 

N

N

N

N

N

N

N

CH3

 

-0.360 [8] 

TCNQ_18 

N

N

N

N

N

N

N

CH3

 

-0.370 [8] 

TCNQ_19 

N

N

N

N

N

N

N

 

-0.340 [8] 

TCNQ_20 

N

N
N

NCl

 

+0.290 [10] 

TCNQ_21 

N

N
N

NF

F  

+0.300 [12] 

TCNQ_22 

N

N
N

NO

CH3

O

CH3  

-0.010 [10] 

TCNQ_23 

N

N
N

NF

FF

F

 

+0.530 [10] 

 

 

 

190 



K. Bamba et al. / RAMReS Sciences des Structures et de la Matière      Vol. 6, N° 2  (2022) 186 – 211 

  

Table 1 (continued)  

 Training set   

Code Molecule Eexp
1 (V)(a)  Reference 

TCNQ_24 

NN

N N

N

S

N
N

N

 

-0.010 [13] 

TCNQ_25 

N

N
N

N

 

+0.080 [8] 

TCNQ_26 

N

N

N

N  

+0.210 [8] 

TCNQ_27 

N

NN

N  

-0.040 [8] 

TCNQ_28 

NN

N N  

-0.570 [8] 

TCNQ_29 

NN

N N

S

S

 

-0.140 [8] 

TCNQ_30 
S

N

N

S

N

N

 

-0.026 [8] 
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Table 1 (continued)  

 Test set   

Code Molecule Eexp
1 (V)(a)  Reference 

TCNQ_31 
S

N

N

S
N

N  

+0.260 [8] 

TCNQ_32 

N

N
N

NO

CH3

 

+0.070 [10] 

TCNQ_33 

N

N
N

NCl

Cl  

+0.410 [10] 

TCNQ_34 

N

N
N

N

N

N

 

+0.650 [10] 

TCNQ_35 

NN

N N

N

S

N

 

+0.120 [14] 

TCNQ_36 

N

N
N

N  

+0.130 [8] 

TCNQ_37 

NN

N N  

-0.440 [8] 
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Table 1 (continued)  

 Test set   

Code Molecule Eexp
1 (V)(a)  Reference 

TCNQ_38 O

N

N N

N  

+0.030 [8] 

TCNQ_39 

N

N
N

NF

 

+0.260 [11] 

TCNQ_40 

NN

N N

N

S

NN

S

N

 

-0.020 [13] 

(a)Eexp
1 (V): first reduction potential. 

 

2.2. Used theory Level and Software  

The GaussView 5.0 [15] software was 

used to represent the 3D structure and to visualize 

the studied molecules. Then, the Gaussian 09 

software [16] was used for optimization and 

frequency calculation (temperature: 298.15 

Kelvin, pressure: 1 atmosphere, in vacuum). 

These predictions were performed at B3LYP/6-

31G(d,p) level. As for 2D structures, they have 

been represented with Chemsketch [17]. The 

EXCEL software [18] was used for graphic 

representation. The XLSTAT software [19] was 

used for modeling and statistical tests. For the 

calculation of the observation levers, the Minitab 

18 software [20] was used. 

 

2.3. Calculated molecular descriptors 

 As part of our work, six (06) descriptors 

were calculated. These are: electronic energy 

(ET), dipole moment (μD), Ionization Potential 

(IP), Electronic Affinity (EA), Nucleophilic index 

(N) and the sum of the absolute value of the 

Mulliken charges (Q). Table 2 presents the 

different approaches to these descriptors. 
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Table 2 

List of molecular used descriptors.  

Molecular descriptor  Notation Expression 

Electronic energy ET  

Dipole moment μD  

Ionization potential  IP IP=-EHOMO [21] 

Electronic affinity  EA EA=-ELUMO [21] 

Nucleophilic index  N            N (Nu) = EHOMO(Nu) − EHOMO(TCE)[22] 

Sum of the absolute 

value of the Mulliken 

charges 

Q  

TCE stands for TetraCyanoEthene. 

 

2.4. Statistical analysis 

 To develop a QSPR (Quantitative 

Structure-Property Relationship) model, a data 

analysis method is required. This method 

quantifies the relationship between the studied 

property and the molecular structure (descriptors). 

There are several methods for the implementation 

of a model and the analysis of its statistical data. 

But the one we used in our study is Multiple 

Linear Regression (MLR) (Many explanatory 

variables). The generalized relation of the 

Multiple Linear Regression (MLR) equation [23] 

is as follows: 

Y = a0 + a1X1 + a2X2 + ⋯ + anXn                      (1) 

In this expression, Y is the response or the 

dependent variable, X1, X2,…, Xn are descriptors 

(characteristics or independent variables) present 

in the model with the corresponding regression 

coefficients a1, a2,…, an, respectively, and a0 is the 

constant term of the model. For given values of 

X1, X2,…, Xn, the response Y must also follow a 

normal law. The descriptors involved in an MLR 

model should not correlate. For a statistically 

reliable model, the maximum number of 

descriptors should be on the order of one-fifth of 

the number of compounds in the training set. A 

MLR model that matches the data provided will 

lead to a scatterplot showing the deviation of the 

points from the fit line. 

The selection of descriptors is a crucial step in 

QSPR modeling. In this study, the selection of 

descriptors was based on two criteria described 

below. 

 

2.4.1. Criterion 1 

There must be a linear dependence 

relationship between the first reduction potential 

and the descriptors. Under these conditions we 

shall have |R| ≥ 0.50 [24], with R, the linear 

correlation coefficient of the line                      

Eexp = 𝑓(Descripteuri). 
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2.4.2. Criterion 2 

The descriptors must be independent on 

each other. To do this, the partial correlation 

coefficient aij between the descriptors i and j must 

be less than 0.70 ( aij < 0,70 ) [24]. For a 

multilinear regression, the coefficients R and aij 

are expressed as follows: 

R =
COV(X,Y)

SX.SY
                  (2) 

aij =
COV(Xi,Xi)

Var(Xi)
                               (3) 

The relationships 4, 5, 6 and 7 were used to 

calculate many statistical and validation 

parameters: 

ESS = ∑(Yi,cal − Y̅exp)2     (4) 

TSS = ∑(Yi,exp − Y̅exp)2     (5) 

RSS = ∑(Yi,exp − Yi,cal)
2     (6) 

TSS = ESS + RSS       (7) 

With, TSS: Total Sum of Squares; ESS: Extended 

Sum of Squares; RSS: Residual Sum of Squares. 

2.4.3. Statistical parameters 

2.4.3.1. Determination coefficient(𝑅2) [25] 

The determination coefficient is given by 

the following relationship:  

 R2 = 1 −
∑(Yi,exp−Yi,cal)2

∑(Yi,exp−Y̅exp)2 
= 1 −

RSS

TSS
       (8) 

With, R = √
∑(Yi,cal−Y̅exp)2

∑(Yi,exp−Y̅exp)2 = √
ESS

TSS
                    (9) 

2.4.3.2. Standard deviation (S) [26] 

It is an indicator of dispersion. It provides 

information on how the distribution of data is 

performed around the average. The closer its 

value is to 0, the better the adjustment and the 

more reliable the prediction. 

S = √
∑(Yi,exp−Yi,cal)2

n−p−1
= √

RSS

n−p−1
             (10) 

2.4.3.3. Adjusted determination coefficient 

(R2
adjusted) [27] 

It allows to measure the robustness of a 

model unlike R2. This coefficient is used in 

multiple regressions because it takes into account 

the number of parameters (descriptors) of the 

model. 

Radjusted
2 = 1 −

(n−Intercept)

n−p−1
×

RSS

TSS
  =

               1 −
(n−Intercept)

n−p−1
× (1 − R2)                  (11) 

2.4.3.4. Fisher-Snedecor coefficient (F) [28] 

It allows testing the global significance of 

linear regression. A globally significant 

regression equation contains at least a relevant 

explanatory variable to explain the dependent 

variable. The Fisher-Snedecor coefficient is 

related to the determination coefficient by the 

following relationship: 

F =
n−p−1

p
×

ESS

RSS
=

n−p−1

p
×

R2

1−R2             (12) 

2.4.3.5. Cross-validation coefficient (𝑄𝐿𝑂𝑂
2 ) [29] 

It measures the accuracy of the prediction 

on the data of the training set 

QLOO
2 = 1 −

∑(yi,exp−yi,pred)2

∑(yi,exp−y̅exp)
2 = 1 −

PRESS

TSS 
        (13) 

According to Erickson et al. [30], a model with a 

value of QLOO
2 > 0.50 is satisfactory in the 

prediction. In contrast, when a model displays 

QLOO
2 > 0.90, it is said to be excellent. 

2.4.3.6. Cross -validation criteria (PRESS) [29] 

The sum of the quadratic prediction errors 

PRESS (Prediction Sum of Squares) is defined by 

the relationship: 
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PRESS = ∑(yi,exp − yi,pred)2     (14)  

This criterion is used to select models with good 

predictive power (we always look for the smallest 

PRESS). A Standard Deviation of Error of 

Prediction (SDEP) is calculated from PRESS: 

SDEP = √
∑(yi,exp−yi,pred)2

n
= √

PRESS

n
             (15) 

In these expressions, n is the number of molecules 

in the training set, p is the number of explanatory 

variables. yi,exp and yi,pred are the experimental 

and predicted values of property for molecule i, 

respectively, and y̅exp is average value of the 

property for the training set. 

2.4.3.7. Todeschini’s parameter ( 𝑅𝑃
2

 
𝑐 ) [31] 

RP
2

 
𝑐  is the corrected form of P.P. Roy’s 

parameter noted RP
2  [32]. It allows knowing if the 

model is due to chance correlations or not. If this 

parameter is greater than 0.50, then the model is 

not due to a chance correlations. It is defined as:  

RP
2

 
𝑐 = R√R2 − Rr

2     (16) 

with Rr
2, the average value of Rri

2  of the models 

obtained with the randomized property. 

2.4.3.8. External validation coefficient           

(𝑄𝑒𝑥𝑡
2 ) [33] 

It measures the accuracy of the prediction 

on the test set data. 

Qext
2 = 1 −

n

next

PRESS(test)

TSS
     (17) 

Here, next refers to the number of test set 

compounds 

2.4.3.9. Parameter (RMSEP) [33] 

External predictive ability of QSPR 

(Quantitative Structure-Property Relationship) 

model may further be determined by root mean 

square error in prediction given by: 

RMSEP = √
∑(yexp (test)−ypred(test))2

next
             (18) 

2.4.3.10. Roy et al.’s parameters                             

 ( 𝑟𝑚
2̅̅ ̅ and ∆𝑟𝑚

2) [34] 

For the acceptable prediction, the value of  

∆rm
2  should preferably be lower than 0.20 when 

the value of  rm
2̅̅̅̅  is more than 0.50. 

rm
2̅̅̅̅ =

(rm
2 +r′

m
2

)

2
       (19) 

 ∆rm
2 = |rm

2 − r′m
2 |                      (20) 

Where, 

 rm
2 = r2(1 − √r2 − r0

2)    (21) 

and  r′m
2 = r2(1 − √r2 − r0

′2)    (22) 

The parameters r2 and r0
2 are the determination 

coefficients between the observed and predicted 

values of the compounds (training set or test set) 

with and without intercept, respectively. The 

parameter r0
′2 bears the same meaning but uses the 

reversed axes.  

2.4.3.11. External validation criteria or 

"Tropsha’s criteria" [29, 35]. 

There are five criteria: 

- Criterion 1: Rext
2 > 0.70 

- Criterion 2 : Qext
2 > 0.60 

- Criterion 3: 
|Rext

2 −R0
2|

Rext
2 < 0.1 and 0.85<k<1.15 

- Criterion 4: 
|Rext

2 −R0
′2|

Rext
2 < 0.1and 0.85<k’<1.15 

- Criterion 5: |Rext
2 − R0

2| < 0.3  

where, Rext
2  stands for the determination 

coefficient of molecules for the test set; R0
2  

represents the determination coefficient of the 
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regression between predicted and experimental 

values for the test set without intercept; R0
′2 is the 

determination coefficient of the regression 

between experimental and predicted values for the 

test set without intercept. k stands for the slope of 

the correlation line (predicted values according to 

the experimental values with intercept = 0) and k’ 

is the slope of the correlation line (experimental 

values according to the predicted values with 

intercept = 0). Ouattara et al. [36] reported that if 

at least 3/5 of the Tropsha’s criteria are verified, 

the developed QSPR (Quantitative Structure-

Property Relationship) model is considered as a 

successful model in predicting of the studied 

property. 

2.4.3.12. Lever (hii) [37] 

The lever is a kind of distance from the 

barycentre of the points in the space of the 

explanatory variables. It identifies observations 

that are abnormally far from others.  

For observation i,  

hii = xi(XTX)−1xi
T                (23) 

where xi is the line vector of the descriptors of 

compound i (i=1, 2… , n) and X is the matrix of 

the model derived from the values of the 

descriptors of the training set. The index T refers 

to the transposed matrix/vector. The critical value 

of lever h* is, in general, set to 
3 (p+1)

n
 [38]. Where 

n is the number of compounds in the training set 

and p is the number of model descriptors.  

If the hii value of a compound in the training set is 

greater than the threshold value h*, the structure 

of this compound reinforces the developed model. 

If all the data points lie in the region of                       

0 ≤ hii ≤ h* and −3σ ≤ R ≤ 3σ, the developed 

model can be considered statistically acceptable 

and valid. Any compound having a standardized 

residue greater than three standard deviation units 

(R>3σ) and which displays a leverage value less 

than the threshold value (hii <h*), can be 

considered as outlier of the response (Y outlier). 

On the other hand, if the value of the leverage of 

a compound is greater than the threshold value 

(hii> h*) while the value of R is less than 3 

standard deviation units, this compound can be 

considered as structurally influential (X aberrant). 

The latter stabilizes the developed model and 

makes it more precise. It is said to be a good 

influential point. 

2.4.3.13. Shapiro-Wilk test 

 Very popular, the Shapiro-Wilk test [39] 

is based on the W parameter. Compared to other 

tests, it is particularly powerful for small numbers 

(n ≤ 50). The test statistic is written: 

W =
[∑ ai(yn−i+1−yi)

k=[
n
2

]

i=1
]

2

∑ (yi−y̅)2
i

     (24) 

With, 

 𝑎𝑖 = 𝑎𝑛−𝑖+1, yi corresponds to the series of 

sorted data; 

[
n

2
] is the whole part of the report 

n

2
 ; 

𝑎𝑖  are generated constants from the mean and the 

variance covariance matrix of the quantiles of a 

sample of size n according to the normal 

distribution. The constants an−i+1 are provided in 

specific tables. The W statistic can therefore be 

interpreted as the coefficient of determination 
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between the series of generated quantiles from the 

normal distribution and the empirical obtained 

quantiles from the data. 

The null and alternative hypotheses of the 

Shapiro-Wilk test are as follows: 

H0: The sample of size n follows a normal 

distribution; 

H1: The sample of size n does not follow a normal 

distribution. 

The value of the W statistic is as high as the 

compatibility with the normal distribution is 

credible. 

If W < Wcritical, rejects H0                            (25) 

If W > Wcritical, do not reject H0                             (26) 

2.4.3.14. Durbin-Watson test 

Developed by Durbin and Watson (1950, 

1951), the Durbin-Watson test [40-42] is used to 

detect autocorrelation between the residuals of a 

linear regression. In practice, the error terms are 

often autocorrelated, which can lead to poor 

estimation of the parameters. We assume that the 

residuals εi are stationary and distributed 

according to a normal distribution with mean 0. 

The null and alternative hypotheses of the Durbin-

Watson test are as follows: 

H0: The residuals are not autocorrelated (ρ = 0); 

H1: The residuals are distributed according to an 

autoregressive process of order 1 (AR 1) (ρ> 0). 

The d statistic of the test is written: 

 d =
∑ (εi−εi−1)2n

i=2

∑ εi
2n

i=1

                            (27) 

where εi = 𝑦𝑖 − �̂�𝑖  and 𝑦𝑖 and �̂�𝑖 are respectively 

the observed values and the predicted values of 

the response (dependent variable) for     compound 

i. The upper and lower critical values, dU (Upper) 

and dL (Lower) were tabulated (Durbin-Watson 

table) for different values of k (number of 

explanatory variables) and n (sample size). 

If d < dL, reject H0: ρ = 0              (28) 

If d > dU, do not reject H0: ρ = 0            (29) 

 If dL <d <dU, the test is inconclusive             (30) 

 

2.5. Contribution of an explanatory variable to 

the prediction of a property 

 The calculation of the contributions is a 

very important step because it allows to know the 

contribution of each explanatory variable in the 

prediction of the studied property. For any 

explanatory variable Xi, the contribution Cxi to the 

prediction of the property associated with it is 

based on the t statistic (Student's test) [43, 44]. 

The contribution of the variable Xi is given by the 

following relation: 

CXi =
|t(Xi)|

∑|t(Xi)|
× 100                              (31) 

Cxi expressed as a percentage (%); 

|t(Xi)| : absolute value of the t-test of the variable 

Xi; 

∑|t(Xi)|  : sum of the absolute values of the t-tests 

of all the explanatory variables Xi; 

 

3. Results and discussion 

 

3.1. Values of calculated molecular descriptors 

 In this study, six molecular descriptors 

were calculated and subjected to two basic 

selection criteria. Among these, the most relevant 

have been retained. The selected molecular 
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descriptors will be used to establish a predictive 

QSPR model. Table 3 reports the values of these 

different descriptors. 

 

Table 3  

Values of the calculated molecular descriptors. 

Training set 

Compound EHF(ua) μD(D) IP (eV) EA (eV) N(eV) Q(e) 

TCNQ_1 -713.5112 1.2956 9.5405 1.3899 2.5695 5.2086 

TCNQ_2 -752.5457 0.0048 9.4458 1.3011 2.6642 5.8597 

TCNQ_3 -830.6153 1.1663 9.4003 1.1920 2.7096 6.8178 

TCNQ_4 -1057.8633 0.0007 8.2606 1.3047 3.8494 7.3640 

TCNQ_5 -979.7865 7.0566 8.8813 0.6940 3.2286 6.4581 

TCNQ_6 -1620.9555 5.3314 9.4455 1.0323 2.6644 6.8626 

TCNQ_7 -1620.9555 5.2417 9.4621 1.0187 2.6478 6.9503 

TCNQ_8 -1620.9652 5.8346 9.7824 -0.0087 2.3275 7.0703 

TCNQ_9 -899.9120 0.0009 8.9094 1.1041 3.2006 7.8243 

TCNQ_10 -995.0777 3.2992 9.9220 1.1041 2.1879 4.3068 

TCNQ_11 -2995.1456 2.5805 9.8140 1.0464 2.2960 4.0793 

TCNQ_12 -5545.3515 0.0008 8.6467 0.9386 3.4632 5.1305 

TCNQ_13 -1468.3189 0,0025 9.2999 1.1596 2.8100 5.2730 

TCNQ_14 -1941.5576 3.7802 8.7349 1.1928 3.3750 6.0698 

TCNQ_15 -1620.9586 7.5197 8.3741 1.6256 3.7359 6.0658 

TCNQ_16 -1620.9677 0.0001 8.6198 1.5181 3.4901 6.0281 

TCNQ_17 -1335.3861 7.0203 8.7387 0.4912 3.3712 11.2990 

TCNQ_18 -1374.4254 5.9488 8.7072 0.4765 3.4028 11.8564 

TCNQ_19 -1564.9354 7.0959 8.6876 0.4003 3.4224 12.8765 

TCNQ_20 -1133.3549 0.6473 9.7514 1.6805 2.3585 4.5277 

TCNQ_21 -872.1519 0.0013 9.9027 1.8052 2.2072 5.6343 

TCNQ_22 -902.2406 0.0003 9.2234 1.0568 2.8865 7.3445 

TCNQ_23 -1069.8062 0.0003 10.1011 2.1407 2.0088 6.3119 

TCNQ_24 -1364.3140 4.8625 9.9789 0.8581 2.1310 8.0415 

TCNQ_25 -674.4769 0.0021 9.6496 1.4810 2.4603 4.6139 

TCNQ_26 -827.1226 0.0000 8.7850 1.6236 3.3250 5.6701 

TCNQ_27 -827.1288 5.7800 9.6308 0.8752 2.4791 5.4756 

TCNQ_28 -1285.1043 9.4298 8.7151 -0.1976 3.3949 8.3138 

TCNQ_29 -1620.9606 5.6378 9.5770 0.5840 2.5330 7.0014 

TCNQ_30 -1545.2181 0.0002 8.7107 1.0135 3.3993 5.7957 

 

199 



K. Bamba et al. / RAMReS Sciences des Structures et de la Matière      Vol. 6, N° 2  (2022) 186 – 211 

  

Table 3 (continued)  

Test set 

Compound  EHF(ua)             μD(D)  IP (eV)  EA (eV) N(eV) Q(e) 

TCNQ_31 -1620.9663 7.0390 8.4998 1.5061 3.6102 6.0774 

TCNQ_32 -788.3593 2.2953 9.3892 1.2772 2.7208 5.9068 

TCNQ_33 -1592.2326 0.0060 9.8505 1.8656 2.2595 4.4763 

TCNQ_34 -857.8923 0.0021 10.3050 2.3642 1.8050 5.1098 

TCNQ_35 -1179.6872 0.2582 9.8981 1.2878 2.2119 6.3227 

TCNQ_36 -904.0091 0.0009 8.2744 1.6443 3.8355 6.0517 

TCNQ_37 -1132.4472 9.0068 8.7627 -0.0397 3.3473 7.6001 

TCNQ_38 -672.4243 5.6929 10.1493 1.0663 1.9607 5.6617 

TCNQ_39 -773.3150 0.9722 9.7702 1.6506 2.3398 5.0955 

TCNQ_40 -1684.8960 2.5177 10.1839 0.8423 1.9261 8.0745 

 

3.2. Selection of relevant molecular descriptors 

3.2.1. Submission of molecular descriptors to 

selection criterion 1 

 The submission of molecular 

descriptors to selection criterion 1 is presented in 

table 4. The examination of the data in table 4 

shows that there is a linear dependency 

relationship between the first reduction potential 

and the descriptors: μD, EA, and Q as  |R| > 0.50. 

Regarding the electronic energy E(HF), the 

ionization potential EI and the nucleophilicity 

index N, it is clear that |R| < 0.50. Thus, they 

must be systematically rejected. Among these 

different calculated descriptors, only EA, Q and 

μD will therefore be subject to criterion 2. 

 

3.2.2. Submission of molecular descriptors to 

selection criterion 2 

 The submission of molecular 

descriptors to selection criterion 2 is presented in 

table 5. On analysis of the results of table 5, the 

partial correlation coefficients are all less than 

0.70. This implies that the descriptors: EA, Q and 

μD are independent two by two. They can 

therefore coexist in the same QSPR model. Also, 

in order to identify the descriptors which actually 

contribute to the prediction of the first reduction 

potential, statistical tests were also carried out. 

Table 4 

Submission of molecular descriptors to criterion 1. 

Equation Correlation coefficient |𝑅| Descriptor rejected if |𝑅| < 0.50 

      Eexp = 𝑓(E(HF)) 0.1210 Rejected 

        Eexp = 𝑓(μD) 0.6025 Retained 

        Eexp = 𝑓(EI) 0.3155 Rejected 

        Eexp = 𝑓(EA) 0.9615 Retained 

        Eexp = 𝑓(N) 0.3155 Rejected 

        Eexp = 𝑓(Q) 0.6191 Retained 
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Table 5 

Submission of descriptors to criterion 2. 

Correlation between: Coefficient 𝑎𝑖𝑗 Independent descriptors if 𝑎𝑖𝑗 < 0.7 

AE et μD -0.1168 Independent 

AE et Q -0.1367 Independent 

Q et μD 0.3514 Independent 

 

3.3. Development of the QSPR model:     

𝐄𝐭𝐡𝐞𝐨
𝟏 = 𝒇(𝐄𝐀, 𝐐 𝐞𝐭 𝛍𝐃) 

3.3.1. Regression equation and Student's test of 

the QSPR model 

 The regression coefficients in table 6 

attributed to the different explanatory variables 

lead to the following regression equation: 

Etheo
1 = −0.4237 + 0.4769 × AE − 0.0180 × Q +

0.0143 × μD                            (32) 

The regression equation indicates that the 

coefficients of the variables EA and μD are 

positive when that of Q is negative. Under these 

conditions, the first reduction potential evolves in 

the same direction as EA and μD when it evolves 

in the opposite direction of Q. Indeed, the increase 

in the parameters EA and μD leads to an increase 

in the theoretical redox potential while a large 

value of the charge Q leads to a reduction in the 

redox potential. For the constant at the origin and 

the explanatory variable EA, we note values of the 

p-values belong to the interval [0; 0.001[ showing 

that the latter have a highly significant influence 

on the potential of first reduction. Regarding the 

variables Q and μD, we record values of p-values 

belong to] 0.001; 0.01]. This shows that these last 

two variables have a very significant influence on 

the first reduction potential of the family of 

studied molecules. The absolute values of the          

t statistical test and the values of the contributions 

reveal that the electronic affinity EA still makes 

the strongest contribution (73.01%) indicating 

that this is the main predictor of the potential for 

first reduction of the studied TCNQ family. The 

sum of the charges of Mulliken Q brings a 

contribution of 13.46% when the dipole moment 

μD brings a contribution of 13.52%. 

 

3.3.2. Analysis of Variance table (ANOVA) and 

overall Fisher test of the model 

 The summary of the determined 

parameters from the ANOVA test is reported in 

table 7. We note that the p-value belongs to the 

interval [0; 0.001[ indicating that the model 

regression equation is highly significant for the 

prediction of the first reduction potential of the 

series of studied molecules. This significance is 

confirmed by the very high Fischer value (F = 

165.5894) which is very large than the 

significance limit value (Flimite = 2.98). To be 

more precise, at least one of the explanatory 

variables is relevant to explain the dependent 

variable (redox potential). Moreover, the 

experimental variance is equal to TSS = 1.7407 

when the theoretical variance due to the model is 

equal to ESS = 1.6541.  
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3.3.3. Statistical parameters of model  

 We note in table 8 that the correlation 

coefficient is very high (R=0.9748), which means 

that the potential for first reduction is strongly 

correlated with the selected descriptors. The 

coefficient of determination R2=0.9503 translates 

that 95.03% of the experimental variance of the 

first reduction potential is explained by the 

descriptors of the model. In addition, the very low 

standard deviation (S=0.0577) shows a good fit 

and a high reliability of the prediction. Certainly, 

the statistical parameters gave satisfactory results 

but it is necessary to carry out the validation tests 

of this model. 

 

 

 

Table 6 

Values of the regression coefficients of model. 

Source Coefficient Standard error t Cxi(%) p-value 

Constante -0.4237 0.0662 -6.3987 - < 0,0001 (***) 

AE 0.4769 0.0308 15.4791 73.01 < 0,0001 (***) 

Q -0.0180 0.0063 -2.8545 13.46 0,0084   (**) 

μD 0.0143 0.0050 2.8669 13.52 0,0081   (**) 

      (**)Very significant  (***)Highly significant      |𝑡𝑐𝑟𝑖𝑡𝑖𝑞𝑢𝑒| = 2.06  

 

 

 

Table 7 

ANOVA output. 

Source DDL 
Sum of squares 

 

Average of 

squares 

 

F p-value 

Modèle 3 1.6541 0.5514 165.5894 < 0.0001 (***) 

Erreur 26 0.0866 0.0033   

Total corrigé 29 1.7407    

 

 

 

Table 8 

Statistical parameters of the model. 

n R R2 Rajusté
2  S F 

30 0.9748 0.9503 0.9445 0.0577 165.5894 
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3.4. Internal validation of the model 

3.4.1. Leave-One-Out cross-validation of the 

model 

 In table 9, statistical parameters of the 

LOO cross-validation of the model are gathered. 

We note remarkably that the cross validation 

coefficient LOO of the model is greater than 0.90 

( QLOO
2 > 0.90). That proves that the model is 

excellent in the prediction of the potential of first 

reduction of the family of studied molecules 

according to Ericsson et al. [30]. Also, out of 100 

molecules in the training set, 94.29 have their 

redox potentials predicted. The model therefore 

has a very high predictive capacity with respect to 

the molecules of the training set. This result 

therefore shows that our developed QSPR model 

is very insensitive to an operation to set apart a 

molecule and put it back in the training series 

(Leave-One-Out) because the cross-validation 

coefficient QLOO 
2 is close to that of determination 

R2. This justifies its robustness. Regarding the 

coefficient ( rm
2 (LOO)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), its value is greater than 

0.50 when that of ∆rm
2 (LOO) is less than 0.2. 

Therefore, for the prediction of the redox potential 

of the training set, the model is acceptable. To find 

out whether the established QSPR model is 

hazardous, the randomization test for the studied 

property was carried out. 

3.4.2. Model Y-randomization test 

  In the case of randomization, a circular 

permutation (i.e. 29 iterations) was performed. 

The summary of the mean values of the 

randomization parameters are given in table 10. 

The mean value of the randomized coefficient of 

determination Rr
2 is very low (Rr

2 = 0.1397) 

indicating that the equation of the regression line 

determines only 13.97% of the distribution of 

points (potential for first reduction). In addition, 

there is a strong scatter of the scatter plot around 

the regression line confirmed by a high 

randomized standard deviation (sr=0.2397). The 

very low value of the statistic (Fr = 1.5218) of 

the randomized model shows the equation of the 

randomized model is not significant. Regarding 

the corrected parameter RP
2

 
𝑐  of Todeschini, its 

value is much greater than 0.50 ( RP
2

 
𝑐 > 0.50). 

The parameter RP
2

 
𝑐  being greater than 0.50, the 

developed QSPR model is not due to chance 

correlations. 

 

Table 9 

Statistical parameters of the LOO cross-validation of the model. 

n QLOO
2  rm

2 (LOO)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆rm
2 (LOO) PRESS SDEP 

30 0.9429 0.9259 0.0039 0.0994 0.0576 

 

Table 10 

Mean values of the parameters of the randomization of model. 

Randomized parameter Rr
2 sr Fr RP

2
 

𝑐  

Average value 0.1397 0.2397 1.5218 0.8777 
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3.5. External validation of the model 

3.5.1. External model validation parameters 

 Statistical parameters of external model 

validation are presented in table 11. 

From the analysis of the data in table 11, it is to 

be understood that the model has a very high 

predictive power due to the high value of the 

external validation coefficient  (Qext
2 = 0.9394). 

This translates that out of 100 molecules in the test 

set, 93.94 have their redox potentials predicted by 

the model. Likewise, 95.44% of the experimental 

variance of the first reduction potential is 

explained by the descriptors of the model. 

Regarding  rm
2 (test)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, we note a value is greater 

than 0.50 while that of ∆rm
2 (test) is less than 0.2. 

Thus, the model is acceptable for predicting the 

redox potential of test set molecules. In addition, 

the five (05) criteria of Tropsha were verified. 

3.5.2. Verification of the model's Tropsha 

criteria 

Criterion1:Rext
2 = 0.9544 > 0,70 

Criterion 2: Qext
2 = 0.9394 > 0,60 

Criterion 3: 
|Rext

2 −R0
2|

Rext
2 = 0.0001 < 0.1  

and k = 1.0007 with 0.85 < 𝑘 < 1.15 

Criterion 4: 
|Rext

2 −R0
′2|

Rext
2 = 0.0001 < 0.1  

and k’ =  0.9639 with 0.85 < 𝑘’ < 1.15 

Criterion 5: |Rext
2 − R0

2| = 0.0001 < 0.3 

It can be seen that all five (05) Tropsha criteria are 

verified. In turn, the model is very efficient in 

predicting the first reduction potential of 

molecules in the test set of the experimental 

database. 

 

3.6. Comparison between predicted values  by 

the model and experimental values of the redox 

potential of the test set. 

 The theoretical values of the redox 

potentials were compared with the experimental 

values based on the regression constants of the 

graphs Etheo
1 = 𝑓(Eexp

1 ) of figure 1 and        

Eexp
1 = 𝑓(Etheo

1 ) of figure 2. 

From figures 1 and 2, the values of the guiding 

coefficients k = 1.0007 and k’= 0.9639 are very 

close to unity. Which means, the value of the 

calculated redox property is very close to the 

experimental value (Etheo
1 ≈ Eexp

1 ). Which leads 

to a report closer to unity. The results of the 

external validation further prove that the model 

performs very well in the prediction of the first 

reduction potential of the series of studied 

molecules. It can be used effectively for the 

prediction of the first reduction potential of new 

TCNQ within its area of applicability. 

 

Table 11 

Statistical parameters of external model validation. 

next Rext
2  Qext

2  rm
2 (test)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆rm

2 (test) PRESS (test) RMSEP 

10 0.9544 0.9394 0.9449 0.0000 0.0352 0.0593 
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Fig. 1. Etheo
1 =f(Eexp

1 ) graph of the model test series (intercept = 0). 

 

 

Fig. 2. Eexp
1 =f(Etheo

1 ) graph of the model test series (intercept = 0). 
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3.7. Correlation between predicted values  by 

the model and experimental values of the 

redox potential 

 Through the distribution of the scatter 

plot around the regression line in figure 3, we note 

that there is a strong linear correlation between the 

predicted values by the model and the 

experimental values of the first reduction 

potential. In figure 4, we see that there is a 

similarity between the curves of the predicted 

values by the model and the experimental values, 

especially for the test set. Consequently, these 

graphs confirm that the model is validated and is 

very efficient in the prediction of the redox 

potential. This also reflects the adequacy of the 

level of used theory for the development of this 

QSPR model.

 

Fig. 3. Etheo
1 − Eexp

1  scatterplot of the model. 

 

Fig. 4. Similarity between predicted values  by model and experimental values. 
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3.8. Statistical tests 

3.8.1 Shapiro-Wilk test of the model 

 Parameter values of the Shapiro-Wilk 

test of the model are presented in table 12. 

Analysis of the values in this table shows that the 

calculated p-value is greater than 1 − α =  0.05 

(5% significance level). As regards Wcritical, we 

note that the value is less than that of calculated 

W. As a result, the normality assumption is 

compatible with our data. This normal 

distribution is confirmed by the distribution of the 

point cloud along the first bisector (the equation 

line y = x) (Fig. 5). 

3.8.2. Durbin-Watson test of the model 

 The data in table 13 show the calculated 

statistical test d is greater than the maximum 

critical (dU = 1.66). Also, the calculated p-value is 

greater than 1 − α = 0.05 (significance level of 

5%). It is therefore clear that the residuals are not 

autocorrelated. These residuals do not contain any 

information that could influence the prediction of 

the first reduction potential by the model. This 

interpretation is confirmed by the random 

distribution of the point cloud in figure 6. 

 

Table 12 

Parameter values of the Shapiro-Wilk test of the model. 

W Wcritique p-value 1 − α 

0.9778 0.940 0.6086 0.05 

 

Table 13 

Parameter values of the model Durbin-Watson test. 

d dL dU p-value 1 − α 

1.8706 1.34 1.66 0.3060 0.05 

 

 

Fig. 5. P-P plot (Etheo
1 ) graph of the model. 
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Fig. 6. Normalized residual graph =f(Etheo
1 )  of the model. 

 

 

3.9. Applicability Domain of the model 

 The Williams diagram (graphical 

representation of the standardized residuals as a 

function of the levers) was represented to define 

the Domain of Applicability (Fig. 7). 

On the Williams diagram, we notice all the 

observations of the training set have their 

standardized Residuals figure between ± 3 

standard deviation units. It is the same for the test 

set. This shows that no observation of the two sets 

is aberrant. In addition, the levers obtained are all 

lower than the critical value  (h∗ = 0.4000) 

except that of TCNQ_15. The TCNQ_15 

observation has its lever greater than the critical 

value but with a low standardized residual (value 

between ± 3 standard deviation units) indicating 

that the latter reinforces the elaborated QSPR 

model and increases its precision in the 

prediction: It is a good influential point of view 

that it belongs to the training set. The results of 

the external validation reveal that the model can 

be used as a model for predicting the redox 

potential of future TCNQ belonging to the same 

family in its domain of applicability. 
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Fig. 7. Williams diagram. 

 

4. Conclusion  
  

 The main objective of this work was to 

make a study of Quantitative Structure-potential 

first reduction of a series of forty (40) 

Tetracyanoquinodimethane (TCNQ) derivatives. 

A predictive QSPR model depending on three 

(03) molecular descriptors was established. They 

are: electron affinity (EA), the sum of the absolute 

value of the Mulliken charges (Q) and the dipole 

moment (µD). This model displays various 

statistical and validation parameters very 

satisfactory (R2=0.9503 ; S=0.0577 ; F=165.5894; 

Q2
LOO=0.9429;Q2

ext=0.9394; rm
2 (LOO)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =0.9259; 

 ∆rm
2 (LOO)=0.0039). These different parameters 

show that the developed QSPR model is validated 

and performs well in the prediction of first 

reduction potential. It is acceptable as a prediction 

model. Consequently, it can now be used to 

predict the potential for first reduction of future 

TCNQ of the same family that belongs to its 

domain of applicability. Therefore, we plan to 

exploit this model to design new derivatives of 

Tetracyanoquinodimethane (TCNQ) with 

moderate oxidizing power. 
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