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that

|a(r, ξ)| ≤ Λ(|r|)(1+|ξ|p−1) ∀r ∈ R, ∀ξ ∈ RN .

(H4)− There exists C : R × R −→ R+ con-
tinuous such that ∀r, s ∈ R,∀ξ ∈ RN ,

|a(r, ξ) − a(s, ξ)| ≤ C(r, s)|r− s|(1 + |ξ|p−1).

A typical example of a function that satis-
fies these hypotheses is denoted as a(r, ξ) =
|ξ|p−2ξ + F (r), where F : R −→ RN is a
locally Lipschitz function. There have been
many findings in the variational setting for
Dirichlet or Dirichlet-Neumann problems
concerning elliptic problems (refer to [1–7]).
In the context of L1-setting, new concepts
of solution such that entropy and renormal-
ized solutions have been introduced for el-
liptic and parabolic equations in divergence
form (see [8–11]). In [4], the authors used
and extended the methods introduced in [6]
to study the problem b(u) − div a(u,Du) = f in Ω

−a(u,Du).η ∈ β(x, u) on ∂Ω,
(1)

where a is a divergentiel operator depend-
ing of u and β depending also on the space
variable x. b : R −→ R is continuous, non-
decreasing and surjective with b(0) = 0, and
f ∈ L1(Ω) .
In [12], Ouédraogo studied the same kind of
problem as in [6], but with measure data in-
stead of L1-data. Namely, the author proved
the existence and the uniqueness of the en-
tropy solution of the problem u− div a(u,Du) = ν in Ω

−a(u,Du).η ∈ β(x, u) on ∂Ω,
(2)

where ν is a diffuse measure such that ν =
ν⌊Ω.
In the present paper, we use the same
boundary conditions as in [12], but equation
b(u) − div a(u,Du) = ν is more general as
b : R −→ R is a continuous function, non-
decreasing and surjective with b(0) = 0.

The first difficulty that we encounter in the
study of problem (Eb)(ν) is the fact that the
function b is not invertible. So, the a priori
estimates on entropy solution are not easy
to obtain. To overcome this difficulty, we
use the main section of b−1 that will be de-
fied later.
The second difficulty is that, when one uses
the integration by parts formula in the vari-
ational approach (see section 3 below), it
appear at the boundary, for the part of the
measure data which is in W 1,p(Ω), a term
which cannot vanish. In order to treat this
difficulty, we use the same arguments as in
[12]: we consider a smooth domain Ω in or-
der to work with the space W 1,p

0 (Ω) and to
going back later to the space W 1,p(Ω). More
precisely, Ω is assumed to be a bounded do-
main in RN with a boundary ∂Ω of class C1.
Then, Ω is an extension domain (see [13]),
so we can fix an open bounded subset UΩ of
RN such that Ω ⊂ UΩ, and there exists a
bounded linear operator

E : W 1,p(Ω) → W 1,p
0 (UΩ),

for which
i) E(u) = u a.e. in Ω for each u ∈ W 1,p(Ω),
ii) ∥E(u)∥W 1,p

0 (UΩ) ≤ C∥u∥W 1,p(Ω), where C
is a constant depending only on Ω.
In this paper, Mp

B(Ω) denote the set of all
Radon measures with bounded variation on
Ω such that

Mp
B(Ω) := {ν ∈ Mp

B(UΩ) : ν = ν⌊Ω}.

This definition is independent of the open
set UΩ. Note that for u ∈ W 1,p(Ω) ∩ L∞(Ω)
and ν ∈ Mp

B(Ω), we have

⟨ν, E(u)⟩ =
∫

Ω
u dν. (3)

On the other hand, as ν is diffuse (see [11]),
there exists f ∈ L1(UΩ) and
F ∈ (Lp′(UΩ))N such that ν = f− div(F )
in D′(UΩ). Therefore, we can also write

⟨ν, E(u)⟩ =
∫

UΩ
fE(u) dx+

∫
UΩ
F.∇E(u) dx.

(4)
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The rest of the paper is organized as fol-
lows. In the next section we make pre-
cise the notations which will be used in
the sequel and recall some facts on mea-
sures and capacities. In section 3, we study
the problem (Eb)(ν) by variational meth-
ods. We introduce an accretive operator
Aδ,b related to problem (Eb)(ν) and show
that R(I + αAδ,b) ⊃ L∞(Ω) for all α > 0.
In section 4, we introduce the notion of en-
tropy solution and prove the existence and
uniqueness of this solution. In order to do
this, we characterize Ab, the limit of the op-
erator Aδ,b in Mp

B(Ω).

2 Function spaces and
notation

In this section, we will introduce some no-
tations and definitions that are employed
throughout this paper. The N -dimensional
Lebesgue measure in RN and the (N − 1)-
dimensional Hausdorff measure of ∂Ω are
denoted by |.| and dσ, respectively. The
norm in Lp(Ω) is represented as ||.||p, where
1 ≤ p ≤ ∞. The classical Sobolev space
W 1,p(Ω) endowed with the usual norm de-
noted ||.||1,p. It is widely recognized (see
[14, 15]) that if u ∈ W 1,p(Ω), the trace of
u on ∂Ω can be defined by the continu-
ous linear trace operator τ : W 1,p(Ω) −→
W

− 1
p′ ,p(∂Ω) is surjective.

For 0 < q < ∞, Mq(Ω) is the
Marcinkiewicz space (cf. [16]) defined as the
set of measurable functions
g : Ω −→ R such that

|{x ∈ Ω : |g(x)| > k}| ≤ ck−q, c < ∞.

As usual, for k > 0, we denote by Tk, the
truncation function at height k ≥ 0 defined
by

Tk(u) =


−k if u < −k
u if |u| ≤ k
k if u > k.

Let γ be a maximal monotone operator de-
fined on R. We recall the definition of the

main section γ0 of γ:

γ0(s) =



the element of minimal absolute
value of γ(s) if γ(s) ̸= ∅,

+∞ if [s,+∞) ∩D(γ) = ∅,

−∞ if (−∞, s] ∩D(γ) = ∅.

We denote by ū the average of u, i.e.
ū = 1

|Ω|

∫
Ω
u(x) dx.

We note P = {S ∈ C1(R)/S(0) = 0, 0 ≤
S ′ ≤ 1, supp(S ′) is compact}.
Let A be a multi-valued operator in L1(Ω).
Then A is said to be accretive in L1(Ω) if
||u − ũ||1 ≤ ||u − ũ + α(v − ṽ)||1 for
any (u, v), (ũ, ṽ) ∈ A;α > 0 i.e., for any
α > 0, the resolvent of A, (I + αA)−1,
is a single-valued operator and a contrac-
tion in L1−norm. A is called T−accretive
if ||(u − ũ)+||1 ≤ ||(u − ũ + α(v − ṽ))+||1
for any (u, v), (ũ, ṽ) ∈ A and for any α >
0. Finally, A is called m−accretive (resp.
m− T−accretive) in L1(Ω) if A is accretive
(T−accretive) and moreover, R(I + αA) =
L1(Ω) for any α > 0 (cf. [17–19] for more
details about accretive operators and non-
linear semigroups).
Now, let us introduce some notations and
recall some facts about capacities and mea-
sures usued throughout this paper (cf. [20–
23]). Let G be an arbitrary fixed bounded
open subset of RN with Ω̄ ⊂ G. Given
a compact subset K ⊆ G, we define the
p−capacity of K by:

C1,p(K) := inf{||φ||1,p;φ ∈ C∞
c (G), φ ≥ χK}.

The p−capacity of an open set O ⊂ G is
then defined by

C1,p(O) := sup{C1,p(K);K ⊂ O,K is compact}

which reveals to be equal to the quantity

inf{||φ||1,p;φ ∈ W 1,p
0 (G), φ ≥ χO a.e. onG}.

Finally, the p−capacity of an arbitrary sub-
set E ⊆ G is defined by

C1,p(E) := inf{C1,p(O);O open, E ⊆ O}.
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Let MB(Ω) (resp. MB(∂Ω)) be the space
of all Radon measures on Ω (resp. ∂Ω) with
bounded total variation.
For µ ∈ MB(∂Ω), denote by µ+, µ− and |µ|
the positive part, negative part and the to-
tal variation of the measure µ, respectively,
and denote by µ = µrdσ + µs the Radon-
Nikodym decomposition of µ relatively to
the (N−1)−dimensional Hausdorff measure
dσ.
We denote by Mp

B(Ω) (resp. Mp
B(∂Ω))

the set of Radon measures µ which satisfy
µ(B) = 0 for every Borel set B ⊆ Ω (resp.
B ⊆ ∂Ω) such that C1,p(B) = 0, i.e. the
Radon measures which do not charge sets of
0-capacity.
We denote J0(∂Ω) = {j/j : ∂Ω × R −→
[0; +∞], such that j(., r) is σ− measurable
∀r ∈ R and j(x, .) is convex, l.s.c. satisfy-
ing j(x, 0) = 0 for a.e. x ∈ ∂Ω}. For a.e.
x ∈ ∂Ω, we define

J : W
1
p′ ,p(∂Ω) ∩ L∞(∂Ω) −→ [0,∞]

u 7−→
∫

∂Ω
j(., u)dσ.

Note that J naturally extends to a func-
tional Ĵ on W 1,p

0 (G) ∩ L∞(G) as fol-
lows: Ĵ (u) =

∫
∂Ω
j(., τ(u))dσ for any

u ∈ W 1,p
0 (G). We recall that the closure

of D(Ĵ ) in W 1,p
0 (G) is a convex bilateral

set, so according to [24], there exist unique
(in the sense q.e.) functions γ+, γ− which
are cap-quasi-l.s.c. and cap-quasi-u.s.c. re-
spectively, such that
D(J )

||.|| 1
p′ ,p = {u ∈ W

1
p′ ,p(∂Ω); γ−(x) ≤

ũ(x) ≤ γ+(x) q.e. on ∂Ω}.
Moreover, γ−(x) = inf

n
ũn(x) =

lim
n

inf
1≤k≤n

ũk(x) q.e. x ∈ ∂Ω (respectively
the corresponding analogue for γ+ ) for any
||.|| 1

p′ ,p−dense sequence (un)n in D(J ). We
define the subdifferential operator:
∂J ⊆

(
W

1
p′ ,p(∂Ω) ∩ L∞(∂Ω)

)
×

(
W

−1
p′ ,p′

(∂Ω) + (L∞(∂Ω))∗
)

by

µ ∈ ∂J (u) ⇐⇒

u ∈ W
1
p′ ,p(∂Ω) ∩ L∞(∂Ω),

µ ∈ W
−1
p′ ,p′

(∂Ω) + (L∞(∂Ω))∗

and J (w) ≥ J (u) + ⟨µ,w − u⟩,
∀w ∈ W

1
p′ ,p(∂Ω) ∩ L∞(∂Ω),

where, here as in the following, if note ex-
plicitly stated otherwise, ⟨., .⟩ denotes the
duality between W

1
p′ ,p(∂Ω) ∩ L∞(∂Ω) and

its dual.
To end this section, we define the following
spaces similar to that introduced in [9, 25].
We denote

T 1,p(Ω) := {u : Ω −→ R measurable ;
Tk(u) ∈ W 1,p(Ω) for all k > 0

}
.

In [25], the author proved that for u ∈
T 1,p(Ω), there exists a unique measurable
function w : Ω −→ R such that DTk(u) =
wχ{|w|<k} ∀k > 0. This function w will be
denoted by Du.

Denote by T 1,p
tr (Ω) the subset of T 1,p(Ω)

consisting of the function that can be ap-
proximated by functions of W 1,p(Ω) in the
following sense: a function u ∈ T 1,p(Ω) be-
longs to T 1,p

tr (Ω) if there exists a sequence
(uδ)δ ∈ W 1,p(Ω) such that:
(i) uδ −→ u a.e. in Ω;
(ii) DTk(uδ) ⇀ DTk(u) weakly in L1(Ω) for
any k > 0;
(iii) there exists a measurable function v :
∂Ω −→ R such that (τ(uδ))δ converges a.e.
in ∂Ω to v. The function v is called the trace
of u, denoted τ(u) or u.

3 Penalization problem
In this section, we focus on examining an ap-
proximate problem of (Eb)(ν) by including a
penalization term δΛ for a fixed δ. To estab-
lish the existence of a variational solution,
we introduce an operator Aδ,b and prove that
it is surjective. To get an L∞− estimate on
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the approximate solution, we use the simi-
lar arguments as in [6,12]: We first redefine
and extend the function Λ which appears in
hypothesis (H3), on an odd monotone func-

tion ψ on R such that
∣∣∣∣a(k, 0)
ψ(k)

∣∣∣∣ −→ 0 as
k −→ ∞. This will be possible by setting
Λ(r) := sup

|z|≤r

{
ψ(|z|), |z||a(z, 0)|

}
for r ≥

0. Secondly, we add a penalization term
δψ(u) on the boundary for a fixed δ. This
allows us to compensate the terme with
a(u, 0) by choosing k sufficient large such

that
∣∣∣∣a(k, 0)
ψ(k)

∣∣∣∣ < δ.
Notice that in our case, we need the surjec-
tivity of the function b and the main section
of b−1 to conclude.
Now, we define the operator Aδ,b as follows:

(b(u), ν) ∈ Aδ,b if and only if

u ∈ W 1,p(Ω) ∩ L∞(Ω), ν ∈ Mp
B(Ω)

and there exists a measure µ ∈ Mp
B(∂Ω)

with a.e. x ∈ ∂Ω,

µr(x) ∈ ∂j(x, u(x)) + ∂I[γ−(x),γ+(x)](u(x)),

such that for all ϕ ∈ W 1,p(Ω) ∩ L∞(Ω),∫
Ω
a(u,Du).D(u− ϕ)dx+ δ

∫
∂Ω
ψ(u)(u− ϕ)dσ

≤
∫

Ω
(u− ϕ) dν −

∫
∂Ω

(ũ− ϕ̃) dµ,

ũ = γ+µ
+
s - a.e. on ∂Ω, ũ = γ−µ

−
s - a.e. on ∂Ω,

(5)
where for given interval [a, b] ⊂ R, I[a,b] de-
notes the convex l.s.c. functional on R de-
fined by 0 on [a, b],+∞ otherwise.

Remark 3.1. As the measure µ ∈
Mp

B(∂Ω), |µ| does not charge sets of
0−capacity. From |µs| ≤ |µ|, it follows
that |µs| does not charge sets of 0−capacity.
Consequently, the condition (5) is meaning-
ful.

The Theorem 3.1 below ensures the exis-
tence of a variational solution.

Theorem 3.1. The operator Aδ,b satisfies
the following properties:
i) Aδ,b is T−accretive in L1(Ω),
ii) L∞(Ω) ⊂ R(I + αAδ,b) for any α > 0,
iii) D(Aδ,b) is dense in L1(Ω).

Proof. i) As ν is diffuse, there exists f ∈
L1(UΩ) and F ∈ (Lp′(UΩ))N such that
ν = f− div(F ) in D′(UΩ). Let u, v such
thatν1 = f − div (F1) ∈ b(u) + Aδ,bu,

ν2 = g − div (F2) ∈ b(v) + Aδ,bv.
(6)

By employing similar reasoning as in the
work [12], we show that∫

Ω
(b(u) − b(v))+dx ≤

∫
Ω
(f − g)+dx. (7)

ii) Without loss of generality, we can as-
sume that α = 1 for the purpose of prov-
ing that L∞(Ω) ⊂ R(I + Aδ,b). We take
ν in Mp

B(Ω) ∩ L∞(Ω). Then, there exists
f ∈ L∞(UΩ) and F ∈ (Lp′(UΩ))N such that

ν = f̃ − div (F̃ ) in D′(Ω),

where f̃ = χΩ f and F̃ = χΩ F .
For λ ≥ 1, we regularized the problem
(Eb)(ν) by problems of the form

b
(
Tl(uλ)

)
+ λ|Tl(uλ)|p−2Tl(uλ)

−div a(Tl(uλ), Duλ) = f̃ − div(F̃ ) in Ω,

−a(Tl(uλ), Duλ).η = βλ(x, Tl(uλ))
+δTl(ψ(uλ)) on ∂Ω,

where k ≥ (b−1)0
(
∥f̃∥∞ + 1

)
, which satis-

fies
∣∣∣∣a(k, 0)
ψ(k)

∣∣∣∣ < δ with (b−1)0 the main sec-

tion of b−1. Here, l > max{k, ψ(k)}, and
βλ(x, .) represents the Yosida approximation
of β(x, .) defined by

βλ(x, .) = λ
(
I − (I + 1

λ
β(x, .))

)−1
.

Let us consider the operator
Aδ,λ,b : W 1,p(Ω) −→ [W 1,p(Ω)]∗ defined as
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follows:

⟨Aδ,λ,buλ, ϕ⟩ = λ
∫

Ω
|Tl(uλ)|p−2Tl(uλ)ϕdx

+
∫

Ω
a(Tl(uλ), Duλ).Dϕdx+

∫
Ω
b
(
Tl(uλ)

)
ϕdx

+
∫

∂Ω
βλ(., Tl(uλ))ϕdσ + δ

∫
∂Ω
Tl(ψ(uλ))ϕdσ,

for all ϕ ∈ W 1,p(Ω), where ⟨·, ·⟩ denotes
the duality pairing between W 1,p(Ω) and
(W 1,p(Ω))∗.
This operator is surjective throughout the
following result.
Lemma 3.1. The operator Aδ,λ,b is
bounded, coercive and verifies the
(M)−property.

Proof. The proof of Lemma 3.1 follows the
same lines as the proof of Lemma 3.1 in
[12].

From Lemma 3.1 and according to [26],
we deduce that the operator Aδ,λ,b is surjec-
tive. So, for all ν ∈ Mp

B(Ω) ∩ (W 1,p(Ω))∗

there exists uλ ∈ W 1,p(Ω) such that for all
ϕ ∈ W 1,p(Ω)

⟨Aδ,λ,b b(uλ) − ν, uλ − ϕ⟩ ≤ 0. (8)

Taking ϕ = uλ − p+
ε (uλ − k) as a test func-

tion in (8), where p+
ε (.) is an approximation

of sign+
0 (.) defined as follow

p+
ε (r) =


1 if r > ε
1
ε
r if 0 < r < ε

0 if r < 0,

and using hypothesis (H2), we obtain∫
Ω
b(Tl(uλ))p+

ε (uλ − k) dx−
∫

Ω
p+

ε (uλ − k) dν

+λ
∫

Ω
|uλ|p−2uλp

+
ε (uλ − k) dx

+1
ε

∫
{k<uλ<k+ε}

a(Tl(uλ), 0).Duλ dx

≤ −δ
∫

∂Ω
Tl(ψ(uλ))p+

ε (uλ − k) dσ

−
∫

∂Ω
βλ(., Tl(uλ))p+

ε (uλ − k) dσ. (9)

Using the same arguments as in [12], we can
pass to the limit in (9) as ε −→ 0 to obtain∫

{uλ>k}
b(Tl(uλ))dx ≤ δ

∫
∂Ω∩{uλ>k}

Tl(ψ(uλ))dσ

+
∫

{uλ>k}
fλdx− δ

∫
∂Ω∩{uλ>k}

Tl(ψ(uλ))dσ

≤
∫

{uλ>k}
f̃dx.

Then,∫
{uλ>k}

(
b
(
Tl(uλ)

)
− b

(
Tl(k)

))
dx

≤
∫

{uλ>k}

(
f̃ − b

(
Tl(k)

))
dx.

As l > k then Tl(k) = k. Thus, we have∫
{uλ>k}

(
f̃−b

(
Tl(k))

)
=

∫
{uλ>k}

(
f̃−b(k)

)
≤

0 as k ≥ (b−1)0
(
∥f̃∥∞+1

)
. From inequality

above, we get∫
{uλ>k}

[
b
(
Tl(uλ)

)
− b

(
Tl(k)

)]+
dx ≤ 0, ∀l >

k and then b(Tl(uλ)) ≤ b(k) a.e. in {uλ >
k}. We conclude that b(uλ) ≤ b(k) a.e. in
Ω.
Similarly, we prove that b(uλ) ≥ b(−k) a.e.
in Ω. Consequently |b(uλ)| ≤ b(k) = C.
We deduce that |uλ| ≤ C (since b is contin-
uous and surjective) and then

∥uλ∥∞ ≤ C, (10)

where C is a constant depending on ν and
b.
Using the same arguments as in [12], we can
pass to the limit in (8) with λ −→ +∞, to
get∫

Ω
a(u,Du).Dϕ dx+ δ

∫
∂Ω
ψ(u)ϕ dσ

=
∫

Ω
ϕ dν −

∫
Ω
b(u)ϕ dx−

∫
∂Ω
ϕ̃ dµ, (11)

for all ϕ ∈ W 1,p(Ω)∩L∞(Ω) and µ ∈ ∂J (u).
To conclude the proof of ii), we prove, using
the fact that µ ∈ ∂J (u) and same technics
as in [20], (proposition 20) that the measure
µ satisfies a.e. x ∈ ∂Ω,

µr(x) ∈ ∂j(x, u(x)) + ∂I[γ−(x),γ+(x)](u(x))
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and

ũ = γ−µ
−
s -a.e. on ∂Ω, ũ = γ+µ

+
s - a.e. on ∂Ω.

iii) We show that D(Aδ,b) is dense in L1(Ω)
i.e. D(Aδ,b)

∥.∥1 = L1(Ω).
We haveD(Aδ,b) ⊂ L∞(Ω) ⊂ L1(Ω) (since Ω
is bounded). Therefore D(Aδ,b)

∥.∥1 ⊂ L1(Ω).
Reciprocaly, let’s show that L1(Ω) ⊂
D(Aδ,b)

∥.∥1 . To this end, it suffices to prove
that
L∞(Ω) ⊂ D(Aδ,b)

∥.∥1 (since L∞(Ω) is dense
in L1(Ω)).
Let α > 0. Given ν ∈ Mp

B(Ω) ∩ L∞(Ω), if
we set

b(uα) := (I + αAδ,b)−1ν,

then (b(uα), 1
α

(ν − b(uα))) ∈ Aδ,b.
So, taking ϕ = 0 as a test function in the
definition of the operator Aδ,b, we get
∫

Ω
a(uα, Duα).Duα dx+ δ

∫
∂Ω
ψ(uα)(uα) dσ

≤ 1
α

∫
Ω
uα dν − 1

α

∫
Ω
b(uα)uα dx

−
∫

∂Ω
ũα dµα. (12)

Using hypothesis (H2), we have∫
Ω
[a(uα, Duα) − a(uα, 0)].Duα ≥ λ0 ∥

Duα ∥p
p.

Then, we deduce from inequality (12) that

λ0||Duα||pp ≤ 1
α

∫
Ω
uα dν − 1

α

∫
Ω
b(uα)uα dx

−δ
∫

∂Ω
ψ(uα)uα dσ −

∫
∂Ω
ũα dµα

−
∫

Ω
a(uα, 0).Duα dx. (13)

Using the hypothesis (H3), the monotonicity
of ψ, properties of µ and the L∞−estimate
on uα, we get from (13)

λ0||Duα||pp ≤ 1
α
C ′ + C. (14)

Using the hypothesis (H3), Hölder inequal-
ity and (14), we get

α
∫

Ω
|a(uα, Duα)| ≤ α

∫
Ω

Λ(|uα|)(1 + |Duα|p−1)

≤ αC1 + α
( ∫

Ω

(
Λ(|uα|)

)p
) 1

p
( ∫

Ω
|Duα|p

) 1
p′

≤ αC1 + αC2
( 1
α
C ′ + C

) 1
p′

≤ αC1 + α2
1
p′C2

(1
2

(C ′

α

) 1
p′ + 1

2C
1
p′

)
≤ αC1 + α

1
pC3 + αC4

−→ 0 as α −→ 0.

On the other hand, if ϕ ∈ D(Ω), taking
uα + ϕ and uα − ϕ as test functions in the
definition of the operator Aδ,b, we get after
adding both inequalities

α
∫

Ω
a(uα, Duα).Dϕ dx+ αδ

∫
∂Ω
ψ(uλ)ϕ dσ

=
∫

Ω
ϕ dν −

∫
Ω
b(uα)ϕ dx− α

∫
∂Ω
ϕ̃ dµα. (15)

Passing to the limit as α −→ 0 in inequality
(15), we get

lim
α−→0

∫
Ω
b(uα)ϕ =

∫
Ω
ϕ dν, ∀ϕ ∈ D(Ω). (16)

Since (uα)α is bounded in L∞(Ω), there ex-
ists a subsequence (uαn)n such that uαn ⇀ u
weakly in Lp(Ω); so b(uαn) ⇀ b(u). There-
fore, using (16), we get b(u) = ν.
As (uα)α is bounded in L∞(Ω) and b is con-
tinuous, we have

||b(uα)||pp =
∫

Ω
|b(uα)|p ≤

∫
Ω

||b(uα)||p∞ ≤ C.

By Lebesgue dominated convergence theo-
rem, b(uα) −→ ν in Lp(Ω). As a conse-
quence, ν ∈ D(Aδ,b)

||.||1 .
The proof of theorem 3.1 is thus accom-
plished.

4 Entropy solution
In accordance with [4], we define an entropy
solution of (Eb)(ν) in the following manner.
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Definition 4.1. A function u ∈ T 1,p
tr (Ω)

is an entropy solution for problem (Eb)(ν)
if b(u) ∈ L1(Ω) and there exists a measure
µ ∈ Mp

B(∂Ω) with a.e. x ∈ ∂Ω,

µr(x) ∈ ∂j(x, u(x)) + ∂I[γ−(x),γ+(x)](u(x)),
(17)

such that for all ϕ ∈ W 1,p(Ω) ∩ L∞(Ω),∫
Ω
a(u,Du).DTk(u− ϕ) dx ≤

∫
Ω
Tk(u− ϕ) dν

−
∫

Ω
b(u)Tk(u− ϕ) dx−

∫
∂Ω
Tk(ũ− ϕ̃) dµ,

ũ = γ+µ
+
s - a.e. ∂Ω, ũ = γ−µ

−
s - a.e. ∂Ω.

(18)

We define an operator A by the rule:

(b(u), ν − b(u)) ∈ A if and only ifν ∈ Mp
B(Ω) and

u is an entropy solution of problem (Eb)(ν).

In the following, we use the notation Am,n

(resp. ψm,n) instead of Aδ (resp. δψ), where
ψm,n(u) = 1

m
ψ(u+) − 1

n
ψ(u−), m, n ∈ N∗.

Theorem 4.1. The operator A is
m−accretive with dense domaine in L1(Ω)
and

A = lim inf
m,n−→+∞

Am,n

where lim inf
m,n−→+∞

Am,n is the operator defined
by: (x, y) ∈ lim inf

m,n−→+∞
Am,n ⇐⇒


∀m,n > 0, (xm,n, ym,n) ∈ Am,n and

(x, y) = lim inf
m,n−→+∞

(xm,n, ym,n) in X ×X.

Proof. The proof of this theorem is carried
out in several steps.
Step 1: A priori estimates.
Let ν ∈ Mp

B(Ω). Since ν is diffuse, re-
call that ν = f − div (F ) in D′(UΩ) with
f ∈ L1(UΩ) and F ∈

(
Lp′(UΩ)

)N
where UΩ

is the open bounded subset of RN which ex-
tend Ω via the operator E.
We approximate f and b respectively by

fm,n = (f ∧ m) ∨ (−n) ∈ L∞(Ω) non-
decreasing in m, nonincreasing in n, and
bm,n(σ) = b(σ) + 1

m
σ+ − 1

n
σ− ∀ σ ∈ R.

Note that ||fm,n||1 ≤ ||f ||1.
Let

(
Fm,n

)
m,n≥1

⊂ C∞
0 (UΩ) be a sequence

such that Fm,n → F strongly in
(
Lp′(UΩ)

)N
,

as m,n → +∞. For any m,n ≥ 1 we set

F̃m,n = χΩFm,n and νm,n = fm,n−div(F̃m,n).

For any m,n ≥ 1, one has νm,n ∈
Mp

B(Ω), νm,n ⇀ ν in Mb(UΩ) and νm,n ∈
L∞(Ω). Furthermore, for any k > 0 and
any ξ ∈ T 1,p(Ω),∣∣∣∣∫

Ω
Tk(ξ) dνm,n

∣∣∣∣ ≤ kC(ν,Ω).

By Theorem 3.1, νm,n ∈ R(I + Am,n) and
there exists um,n ∈ W 1,p(Ω) ∩ L∞(Ω) and a
measure µm,n ∈ Mp

B(∂Ω) satisfying

(µm,n)r(x) ∈ ∂j(x, um,n(x)) +
+∂I[γ−(x),γ+(x)](um,n(x)), a.e. x ∈ ∂Ω,

such that for all ϕ ∈ W 1,p(Ω) ∩ L∞(Ω),∫
Ω
a(um,n, Dum,n).D(um,n − ϕ) dx

+
∫

∂Ω
ψm,n(um,n)(um,n − ϕ) dσ

≤
∫

Ω
(um,n − ϕ) dνm,n −

∫
∂Ω

(ũm,n − ϕ̃) dµm,n

−
∫

Ω
bm,n(um,n)(um,n − ϕ) dx (19)

and ũ+/−
m,n = γ+/− (µm,n)+/−

s a.e. on ∂Ω.
In the following, let k > 0 be fixed. Using
ϕ = um,n−Tk(um,n) as a test function in (19)
and applying hypothesis (H2), we obtain

λ0

∫
Ω

|DTk(um,n)|p + 1
m

∫
∂Ω
Tk(um,n)ψ(u+

m,n) dσ

− 1
n

∫
∂Ω
Tk(um,n)ψ(u−

m,n) dσ ≤
∫

Ω
Tk(um,n) dνm,n

−
∫

Ω
Tk(um,n)bm,n(um,n) dx−

∫
∂Ω
Tk(ũm,n)dµm,n

−
∫

Ω
a(um,n, 0).DTk(um,n) dx. (20)
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By Gauss-Green Formula and hypothesis
(H3), we have∣∣∣∣ ∫

Ω
a(um,n, 0).DTk(um,n)

∣∣∣∣
≤

∣∣∣∣ ∫
∂Ω

( ∫ Tk(um,n)

0
a(r, 0)dr

)
.ηdσ

∣∣∣∣
≤

∫
∂Ω

∣∣∣∣ ∫ Tk(um,n)

0
Λ(|r|)dr

∣∣∣∣dσ
≤ C, (21)

where C is a constant depending on k.
Then, from inequality (20), according to the
monotonicity of ψ, we conclude

λ0

∫
Ω

|DTk(um,n)|p ≤ C. (22)

Thus (Tk(um,n))m,n is a bounded subset of
W 1,p(Ω). Hence, after passing to a suit-
able subsequence if necessary, (Tk(um,n))m,n

is weakly convergent in W 1,p(Ω). Then,
Tk(um,n) −→ vk in Lp(Ω) as m,n −→ ∞.
we may also assume that DTk(um,n) ⇀ gk

in (Lp(Ω))N as m,n −→ ∞.
Now, we must prove the convergence almost
everywhere of um,n. As Am,n is T−accretive
in L1(Ω), we have for all m ≥ m′,∫

Ω

(
bm′,n(um′,n) − bm,n(um,n)

)+
dx

≤
∫

Ω
(fm′,n − fm,n)+ dx.

As fm,n is nondecreasing in m, we have

m ≥ m′ =⇒ fm′,n − fm,n ≤ 0
=⇒ (fm′,n − fm,n)+ = 0.

Then
m ≥ m′ =⇒

(
bm′,n(um′,n) − bm,n(um,n)

)+
=

0, i.e. bm′,n(um′,n) − bm,n(um,n) ≤ 0 a.e. on
Ω. Thus,

.
(
b(um′,n) − b(um,n)

)
+ 1
m′

(
(um′,n)+ − (um,n)+

)
+ 1
n

(
(um,n)− − (um′,n)−

)
≤ 0. (23)

It is easy to see that the three terms of
the inequality (23) have the same sign, then

they are negatives which implies that um′,n−
um,n ≤ 0 for m ≥ m′ and n fixed. Then
(um,n)m is nondecreasing. By the same
method, we show that (um,n)n is nonincreas-
ing.
Since (um,n)m is uniformly bounded then we
deduce that

um,n ↑ un as m → +∞, un ↓ u as n → +∞.

By applying Lebesgue dominated conver-
gence theorem, we get

um,n ↑m un ↓n u, um,n ↓n um ↑m u in L1(Ω).
(24)

Therfore, from (24) we get the convergence
of (um,n) to u in L1(Ω) and also the conver-
gence almost everywhere on Ω.
Then, we conclude that vk = Tk(u) and
gk = DTk(u). Therefore, Tk(u) ∈ W 1,p(Ω)
for all k > 0. Consequently, u ∈ T 1,p(Ω).
Finally, we show exactly as in [9], that
(τ(um,n))m,n converge a.e. on ∂Ω, and then,
u ∈ T 1,p

tr (Ω).
Step 2: Existence of the measure µ.
We still need to show the existence of a mea-
sure µ ∈ Mp

B(Ω) such that µm,n strongly
converges to µ in Mp

B(Ω).
Consider uλ

m,n as a solution to the following
equation:∫

Ω
a(uλ

m,n, Du
λ
m,n).Dφ dx+ 1

m

∫
∂Ω
ψ(uλ,+

m,n)φdσ

− 1
n

∫
∂Ω
ψ(uλ,−

m,n)φdσ =
∫

Ω
φdνm,n

−
∫

Ω
bm,n(uλ

m,n)φdx−
∫

∂Ω
βλ(., uλ

m,n)φ, (25)

for all ϕ ∈ W 1,p(Ω) ∩ L∞(Ω).
We know from Theorem 3.1 that
∥βλ(., uλ

m,n)∥1 is uniformly bounded by
a constant C independent of λ, thus
βλ(., uλ

m,n) ⇀ µm,n in Mp
B(∂Ω) as λ → 0.

Therefore

∥µm,n∥Mp
B(∂Ω) ≤ lim

λ→0
inf ∥βλ(., uλ

m,n)∥Mp
B(∂Ω)

≤ C

and we deduce, after extracting a subse-
quence if necessary that µm,n ⇀ µ weakly
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in Mp
B(∂Ω) as m,n → ∞. To establish the

strong convergence of µm,n, we use the fol-
lowing comparison result.
Lemma 4.1. Let m̃ > m > 0, ñ > n > 0,
then

uλ
m,ñ ≤ uλ

m,n ≤ uλ
m̃,n a.e. in Ω, (26)

and a.e. in ∂Ω,

βλ(., uλ
m,ñ) ≤ βλ(., uλ

m,n) ≤ βλ(., uλ
m̃,n). (27)

Proof. To prove Lemma 4.1, we consider
the test functions φ = p+

ε (uλ
m,n − uλ

m̃,n) and
φ = p+

ε (uλ
m,ñ − uλ

m,n) in equations (25), cor-
responding to the solutions uλ

m,n and uλ
m̃,n,

respectively. By adding both equations and
dropping some non-negative terms, we ob-
tain (26) taking the limit as ε → 0. We use
the definition of βλ to deduce (27).

Note that for the positive and negative
parts, the result of the lemma 4.1 remains
true, that is

±βλ(., uλ
m,ñ)± ≤ ±βλ(., uλ

m,n)± ≤ ±βλ(., uλ
m̃,n)±

Thus, through the previous convergence re-
sult, we have

±µ±
m,ñ ≤ ±µ±

m,n ≤ ±µ±
m̃,n,

which is similar to say that the regular and
singular parts verify this comparison result.
From this we deduce that

µ+
m,n ↑m µ+

n in Mp
B(∂Ω) as m → ∞.

Observe that we get the same results for the
negative parts. This is the end of the proof
of step 2.
Step 3: Convergence results.
We recall that um,n satisfies, for all φ ∈
W 1,p(Ω) ∩ L∞(Ω)∫

Ω
a(um,n, Dum,n).Dφ dx+ 1

m

∫
∂Ω
ψ(u+

m,n)φdσ

− 1
n

∫
∂Ω
ψ(u−

m,n)φdσ =
∫

Ω
φdνm,n

−
∫

Ω
bm,n(um,n)φdx−

∫
∂Ω
βλ(., um,n)φ. (28)

Taking φ = S(um,n − ϕ) as a test function
in (28), where S ∈ P = {p ∈ C1(R); p(0) =
0, 0 ≤ p′ ≤ 1, supp(p′) is compact},
ϕ ∈ W 1,p(Ω) ∩ L∞(Ω), define

l = ||ϕ||∞ + max{|z|, z ∈ supp(S ′)}

and using the same arguments as in [12], we
pass to the limit as m,n −→ +∞ in (28) to
get∫

Ω
a(u,Du).DS(u− ϕ) dx+

∫
∂Ω
S(ũ− ϕ̃)dµ

≤
∫

Ω
S(u− ϕ) dν −

∫
Ω
b(u)S(u− ϕ) dx,

for all ϕ ∈ W 1,p(Ω) ∩ L∞(Ω), and

µr ∈ ∂j(., u) + ∂I[γ−,γ+](u) a.e. in ∂Ω,
ũ = γ+ µ+

s a.e. on ∂Ω, ũ = γ− µ−
s a.e. on ∂Ω.

Taking S as an approximation of Tk, we get
the desired entropy inequality. Therefore,
we have shown that, for all ν ∈ Mp

B(Ω) ∩
L∞(Ω), (I+Am,n)−1ν converge in L1(Ω) to
an entropy solution of the problem (Eb)(ν),
hence lim inf

m,n−→∞
Am,n ⊂ A. For the inverse in-

clusion, we refer to the step below.
Step 4: The accretivity of A.
To prove the accretivity of A, we show as in
( [4], Theorem 4.1) and as in Theorem 3.1
of section 3,∫

Ω
|b(w) − b(v)| ≤

∫
Ω

|f − g|, (29)

where f, g ∈ L1(Ω) provide from the decom-
position of the measures ν1 = f− div (F1) ∈
b(w) + Aw and ν2 = g − div (F1) ∈ b(v) +
A(v).
Step 5: D(A) is dense in L1(Ω)
For this, we show that L∞(Ω) ⊂ D(A)||.||1 .
Let u ∈ L∞(Ω). Consider uα

m,n and uα, α >
0 such thatbm,n(uα

m,n) + αAm,nu
α
m,n ∋ b(u),

b(uα) + αAuα ∋ b(u).
(30)

We know from Theorem 3.1 that D(Am,n) is
dense in L1(Ω), then, for all m,n ∈ N∗, we
have

b(uα
m,n) −→ b(u) in L1(Ω) as α −→ 0.
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As in ( [4], Theorem 4.1), we show that

b(uα
m,n) −→ b(uα) in L1(Ω) as m,n −→ ∞.

Then, we deduce that b(u) ∈ D(A)||.||1 .

Corollary 1. Under the assumptions of
Theorem 4.1, we have the existence and
uniqueness of entropy solution b(u) for the
problem (Eb)(ν).

5 A numerical example
We finally present some numerical results
that we obtained by implementing the influ-
ence of a parameter. As an example of appli-
cation, we made numerical experiments with
the following data which are realistic in the
study of oil and water flow in homogeneous
porous media. We work on the domain
Ω = (0, 1) × (0, 1). Given that β(x, u) = 0,
b(u) = u, and the field a is expressed as
a(u,∇u) = A(x)∇u, where A(x) is a con-
tinuous function satisfying A(x) ≥ M > 0,
we can also set F = 0 and f = χΩ with

f(x) =

1, if x ∈ [0, 1]
0, if x /∈ [0, 1]

is the Lebesgue measure restricted to [0, 1]
and therefore, it is absolutely continuous
with respect to the Lebesgue measure. We
can verify that the hypotheses of Section 1
are satisfied. In this scenario, the problem
(Eb)(ν) formulated on Ω can be stated as
follows:u− div(A(x)Du) = 1 in Ω

−A(x)Du.η = 0 on ∂Ω.
(31)

We seek to illustrate the influence of param-
eter A(x) on the numerical simulations of
the problem.
Experiment 1: Numerical Illustration of
the solution of (31) for A(x) = sin(2π

L
x)

and changing L.
From examining these graphs, we can con-
clude that the variation in the value of L

has a significant impact on the shape and
amplitude of the solution, highlighting the
importance of considering the value of L in
the analysis of the given problem.
Experiment 2: Here we take b(u) = u2,
then keep β(x, u) = 0, a(u,∇u) = A(x)∇u,
with A(x) a continuous function satisfying
A(x) ≥ M > 0, F = 0 and f = χΩ. The
problem (Eb)(ν) which is formulated on Ω
can be written as follows:u

2 − div(A(x)Du) = 1 in Ω
−A(x)Du.η = 0 on ∂Ω,

(32)

The graphs illustrate the impact of the var-
ious A(x) functions on the solutions. We
can observe that for A(x) = sin(2π

L
x), the

solutions exhibit rapid oscillations with low
amplitude, reflecting the fast variation of
A(x). In contrast, for A(x) = 10, the os-
cillations are less frequent with a slightly
higher amplitude due to the constant nature
of A(x). Furthermore, for A(x) = δ(x), the
oscillations are even less frequent and have
a higher amplitude, indicating a slower vari-
ation caused by the constant function A(x)
with a higher value.
These graphs illustrate the importance of
taking coefficient function characteristics
into account when considering problems, as
they have a potent influence on the shape
and dynamics of the solutions obtained.

6 Concluding remark
The numerical solutions of the equation (31)
depend strongly on the value of A(x). The
graphs make it possible to visualize this in-
fluence and to draw conclusions about the
behavior of the system. The first two graphs
are obtained by taking two values of A(x) to
represent situations where the thermal con-
ductivity of the medium varies along the x
axis. Furthermore, when A(x) = δ(x) and
A(x) = sin(2π

L
x) are considered, we obtain

the corresponding two graphs. In the case
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where A(x) = δ(x), the thermal conduc-
tivity varies locally according to the func-
tion δ(x). As shown in the graph, the so-
lution follows the same trend as the func-
tion δ(x), with higher values in areas where
δ(x) is higher. This solution can be used
to examine the impact of local variations
in thermal conductivity on the overall so-
lution. For A(x) = sin(2π

L
x), where L rep-

resents the length of the variation and can
be chosen according to the geometry of the
domain, the thermal conductivity varies pe-
riodically according to a sinusoidal function.
The graph shows that the solution also fits
a sinusoidal function with higher amplitude
in the regions where the thermal conductiv-
ity is higher. This solution can study the
effect of periodic variations in the thermal
conductivity on the solution.
To sum up, based on the graphs, it is ev-
ident that the thermal conductivity of the
environment plays a crucial role in solving
equation (31). Any local or periodic changes
in the thermal conductivity can cause sig-
nificant variations in the solution. These
findings can enhance our comprehension of
the underlying physical phenomena and aid
in devising more effective thermal control
strategies.
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Fig. 1. Impact of the various functions A(x) on the solutions.
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Fig. 2. Comparison of solutions for different L values.

Fig. 3. Comparison of solutions for different functions A(x).
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