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Abstract:

The aim of this paper is to study, for measure-data, the existence and uniqueness of solutions
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of the form -a(u, Du).y € B(z, u). To establish both the existence and uniqueness of

the solution, the concept of entropy solution is employed in this study.
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1 Introduction

Let © be a smooth bounded domain in RV in r € R for c—a.e.x €090, mea-
with Lipschitz boundary 92 and 1< p <N. surable with respect to the (N — 1) —di-
Consider the nonlinear elliptic problem mensional Hausdorff measure o on 0Q
(Eb)(v){ b(uw) —diva(u, Du) =v inQ and such that j(.,0) =0. The vector-

—{a(u, Du), n) € B(x,u) on 0Q, valued function a:RxRNV — RN is

where 77 is the unit outward normal continuous satisfying the following

vector on 412, v is a diffuse measure such classical Leray-Lions-type conditions:

that v =v|Q, Du denotes the gradient (H,) — Monotonicity in & € RV:

(a(r,«f) — a(r,?}-)). (E—n)=0vreRVEneRN
(H, — Coerciveness: 31y > 0) such that

of u, b: R— R is continuous, non-
decreasing and surjective with b(0) =0
and, for a.e.x € 9Q,B(x,r) =dj(x,r) is

the subdifferential of a function (a(r, §) —al(r, U)) §=XlElP vreRVEERY.
j: 00X R — [0,00] which is convex, (Hz ) — Growth restriction: there exists a
lower semicontinuous (lLs.c. for short) continuous function A: RT — R* such
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that

la(r, )] < A(Ir)(A+[E]77) vr € R, V€ € RY.

(H,)— There exists C : R x R — R" con-
tinuous such that Vr,s € R, V¢ € RV,

la(r,&) —als,€)| < C(r,s)lr —s|(1+[¢]").

A typical example of a function that satis-
fies these hypotheses is denoted as a(r, &) =
|€P72¢ + F(r), where F : R — RY is a
locally Lipschitz function. There have been
many findings in the variational setting for
Dirichlet or Dirichlet-Neumann problems
concerning elliptic problems (refer to [1-7]).
In the context of L'-setting, new concepts
of solution such that entropy and renormal-
ized solutions have been introduced for el-
liptic and parabolic equations in divergence
form (see [8-11]). In [4], the authors used
and extended the methods introduced in [6]
to study the problem

b(u) — div a(u, Du) = f in Q
{ (1)

—a(u, Du).n € f(z,u)  on 09,

where a is a divergentiel operator depend-
ing of v and [ depending also on the space
variable x. b : R — R is continuous, non-
decreasing and surjective with b(0) = 0, and
feLl(Q).

In [12], Ouédraogo studied the same kind of
problem as in [6], but with measure data in-
stead of L'-data. Namely, the author proved
the existence and the uniqueness of the en-
tropy solution of the problem

u—div a(u, Du) =v in Q
{ (2)

—a(u, Du).n € f(zx,u) on 09,

where v is a diffuse measure such that v =
v| .

In the present paper, we use the same
boundary conditions as in [12], but equation
b(u) — div a(u, Du) = v is more general as
b: R — R is a continuous function, non-
decreasing and surjective with b(0) = 0.

The first difficulty that we encounter in the
study of problem (E})(v) is the fact that the
function b is not invertible. So, the a priori
estimates on entropy solution are not easy
to obtain. To overcome this difficulty, we
use the main section of b~! that will be de-
fied later.

The second difficulty is that, when one uses
the integration by parts formula in the vari-
ational approach (see section 3 below), it
appear at the boundary, for the part of the
measure data which is in W'?(Q), a term
which cannot vanish. In order to treat this
difficulty, we use the same arguments as in
[12]: we consider a smooth domain € in or-
der to work with the space Wy (Q) and to
going back later to the space W *(Q). More
precisely, € is assumed to be a bounded do-
main in RY with a boundary 99 of class C.
Then, 2 is an extension domain (see [13]),
so we can fix an open bounded subset Ug of
RY such that Q C Ug, and there exists a
bounded linear operator

E:Wh(Q) = WP (Uy),

for which

i) E(u) = u a.e. in Q for each u € W'?(Q),
ii) HE(u)HWOl’p(UQ) < CHUHWLp(Q), where C'
is a constant depending only on €2.

In this paper, I (2) denote the set of all

Radon measures with bounded variation on
() such that

ME(Q) = {v e M(Uyg) : v=r[Q}.

This definition is independent of the open
set Uq. Note that for u € WH(Q) N L™®(Q)
and v € MY (Q), we have

(v, B(u)) = / wdv. (3)

Q

On the other hand, as v is diffuse (see [11]),

there exists f € L'(Ug) and

F € (L*(Uq))Y such that v = f— div(F)

in D'(Ug). Therefore, we can also write

(v,E(u)) = | fE(u)dz+ | F.VE(u)dz.
E E ()
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The rest of the paper is organized as fol-
lows. In the next section we make pre-
cise the notations which will be used in
the sequel and recall some facts on mea-
sures and capacities. In section 3, we study
the problem (FEj)(v) by variational meth-
ods. We introduce an accretive operator
Asp related to problem (E,)(v) and show
that R(I + aAsp) D L>(2) for all o > 0.
In section 4, we introduce the notion of en-
tropy solution and prove the existence and
uniqueness of this solution. In order to do
this, we characterize A, the limit of the op-

erator Asp in ME(Q).

2 Function spaces and
notation

In this section, we will introduce some no-
tations and definitions that are employed
throughout this paper. The N-dimensional
Lebesgue measure in RY and the (N — 1)-
dimensional Hausdorff measure of 02 are
denoted by |.| and do, respectively. The
norm in LP(€2) is represented as ||.||,, where
1 < p < oco. The classical Sobolev space
W'P(Q) endowed with the usual norm de-
noted ||.||1,. It is widely recognized (see
[14,15]) that if u € W'P(Q), the trace of
u on 0f) can be defined by the continu-
ous linear trace operator 7 : W'?(Q)) —
Wﬁi’p(aﬁ) is surjective.

For 0 < ¢ < oo, MIQ) is the
Marcinkiewicz space (cf. [16]) defined as the
set of measurable functions

g : 2 — R such that

{z € Q:|g(x)| >k} < k™% c< oo

As usual, for £ > 0, we denote by T}, the
truncation function at height £ > 0 defined
by

-k ifu<—k
Te(u)=4¢ u if Ju| <k
ko ifu>k.

Let v be a maximal monotone operator de-
fined on R. We recall the definition of the

main section vy of :

the element of minimal absolute
value of y(s) if y(s) # 0,

00) =9 Loo it [s,+00) N D(v) = 0,
o0 if (—oo,s| N D(y) =0

We denote by u the average of u, i.e.

1
u= 9] /Q u(z) dx.
We note P = {S € C'(R)/S(0) = 0,0 <
S" < 1,supp(S’) is compact}.
Let A be a multi-valued operator in L'(£2).
Then A is said to be accretive in L'(€) if
lu —al) < |ju—a+ alv — 0)|; for
any (u,v),(u,v) € A;a > 0 ie., for any
a > 0, the resolvent of A, (I + aA)™?,
is a single-valued operator and a contrac-
tion in L'—norm. A is called T—accretive
if [[(w — @)% < [l(u—a+a(v-10)"h
for any (u,v),(a,0) € A and for any a >
0. Finally, A is called m—accretive (resp.
m — T—accretive) in L*(Q) if A is accretive
(T'—accretive) and moreover, R(I + aA) =
LY(Q) for any a > 0 (cf. [17-19] for more
details about accretive operators and non-
linear semigroups).
Now, let us introduce some notations and
recall some facts about capacities and mea-
sures usued throughout this paper (cf. [20—
23]). Let G be an arbitrary fixed bounded
open subset of RY with Q@ ¢ G. Given
a compact subset K C G, we define the
p—capacity of K by:

Crp(K) = nf{{lpl[1; ¢ € CZ(G), 0 = Xk}

The p—capacity of an open set O C G is
then defined by

C1,(0) :=sup{C,(K); K C O, K is compact}
which reveals to be equal to the quantity
inf{||¢||1.p; ¢ € Wy P(G), ¢ > xo a.e. on G}.

Finally, the p—capacity of an arbitrary sub-
set ¥ C G is defined by

C1,p(E) :=inf{C,,(0); O open, E C O}.
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Let Mp(£2) (resp. Mp(09)) be the space
of all Radon measures on 2 (resp. 0f2) with
bounded total variation.

For € Mp(99Q), denote by ut, u~ and |y
the positive part, negative part and the to-
tal variation of the measure pu, respectively,
and denote by yu = p,.do + ps the Radon-
Nikodym decomposition of u relatively to
the (N —1)—dimensional Hausdorff measure
do.

We denote by MY (Q) (resp. MYE(09))
the set of Radon measures p which satisfy
wu(B) = 0 for every Borel set B C Q (resp.
B C 09) such that Cy,(B) = 0, i.e. the
Radon measures which do not charge sets of
0-capacity.

We denote Jp(002) = {j/j : 02 x R —
[0; +00], such that j(.,r) is c— measurable
Vr € R and j(z,.) is convex, Ls.c. satisfy-
ing j(z,0) = 0 for a.e. x € 0Q}. For a.e.
x € 0F), we define

T WoP0Q) N L20Q) — [0, 00]

u — /j(.,u)da.
o0

Note th@t J naturally extends to a func-
tional J on WyP(G) N L®(G) as fol-

lows: J(u) = /mj(.,r(u))da for any

u € WyP(G). We recall that the closure
of D(J) in Wy*(G) is a convex bilateral
set, so according to [24], there exist unique
(in the sense g.e.) functions 7,,7y- which
are cap-quasi-l.s.c. and cap-quasi-u.s.c. re-

spectively, such that

——llL 1

D7) 7" = {u € WiP(0Q:iy-(z) <
u(z) < v4(x) q.e. on ON}.
Moreover, ~v_(z) = ir&f un(z) =
hgnlé%inuk(x) qe. x € 0N (respectively
the corresponding analogue for v, ) for any
./l ,—dense sequence (u,), in D(J). We
define the subdifferential operator:

07 < (WrPOQ) n L¥09) x

(W77 (09) + (L=(99))") by

€ 0T (u) <=
u € W P(9Q) N L= (99),
pe W7 (00Q) + (L%(99))*
and J(w) > J(u) + (u, w — u),
Yw € W7 P(9Q) N Le(09),

where, here as in the following, if note ex-
plicitly stated otherwise, (.,.) denotes the

duality between W7 * (0Q) N L*®(09) and
its dual.

To end this section, we define the following
spaces similar to that introduced in [9,25].
We denote

TP(Q) := {u: Q — R measurable ;
T (u) € W'P(Q) for all k > O}.

In [25], the author proved that for u €
THP(Q), there exists a unique measurable
function w : Q@ — R such that DTy (u) =
WX{jw|<k} Vk > 0. This function w will be
denoted by Du.

Denote by 7,7 (€) the subset of T5P(1)
consisting of the function that can be ap-
proximated by functions of W?(Q) in the
following sense: a function v € T ?(2) be-
longs to T,-7(Q) if there exists a sequence
(us)s € W'P(Q) such that:

(1) us — w a.e. in

(i) DTy (us) — DTy (u) weakly in L*(Q) for
any k > 0;

(7i1) there exists a measurable function v :
0 — R such that (7(us))s converges a.e.
in 02 to v. The function v is called the trace
of u, denoted 7(u) or u.

3 Penalization problem

In this section, we focus on examining an ap-
proximate problem of (Fj)(v) by including a
penalization term dA for a fixed 9. To estab-
lish the existence of a variational solution,
we introduce an operator As; and prove that
it is surjective. To get an L°°— estimate on
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the approximate solution, we use the simi-
lar arguments as in [6,12]: We first redefine
and extend the function A which appears in
hypothesis (Hj3), on an odd monotone func-

tion ¥ on R such that — 0 as

¥(k)
k — oo. This will be possible by setting
A(r) :|W?HM4%MM@ﬂM}%rT2

0. Secondl)_f, we add a penalization term

0 (u) on the boundary for a fixed §. This

allows us to compensate the terme with

a(u,0) by choosing k sufficient large such
a(k,0)

that <.

U(k)

Notice that in our case, we need the surjec-
tivity of the function b and the main section
of b1 to conclude.

Now, we define the operator As as follows:

(b(u),v) € Asp if and only if

u € WHP(Q) N L>®(Q), v € ME(Q)

and there exists a measure u € MH(09)
with a.e. x € 01,

pr () € 07 (, u()) + Ol (@), @) (w()),
such that for all ¢ € W'P(Q) N L>(Q),
/Qa(u, Du).D(u — ¢)dx + 5/@9 (u)(

< [w=o)yav— [ (a—a)dp

u— ¢)do

U=y ps-a.e ondQ, i =vy_p,- ae. on o,

(5)
where for given interval [a,b] C R, I}, de-
notes the convex l.s.c. functional on R de-
fined by 0 on [a, b], +00 otherwise.

Remark 3.1. As the measure pu €
MYE(0Q), |u| does not charge sets of
O—-capacity.  From |us| < |p|, it follows
that |us| does not charge sets of 0—capacity.
Consequently, the condition (5) is meaning-

ful.

The Theorem 3.1 below ensures the exis-
tence of a variational solution.

Vol. 7, n° 2 (2023) 11-25

Theorem 3.1. The operator Asy satisfies
the following properties:

i) Asp is T—accretive in L*(Q),

it) L=(Q2) C R(I + aAsp) for any o > 0,
iii) D(Asy) is dense in L'(Q).

Proof. i) As v is diffuse, there exists f €
L'(Uq) and F € (L7 (Uq))™ such that

= f— div(F) in D'(Ug). Let u,v such
that

v = f—div (F1) € b(u) + Aspu, (©)
vy =g —div (Fy) € b(v) + Aspv.

By employing similar reasoning as in the
work [12], we show that

L) = b))*de < [ (£ = g)*de. (7

ii) Without loss of generality, we can as-
sume that o = 1 for the purpose of prov-
ing that L>(Q) C R(I + Asp). We take
v in ML(Q) N L>2(Q). Then, there exists
f e L=(Uy) and F € (L” (Ug))Y such that

v=f—div (F)in D'(Q),

where f = xq f and F = yq F.
For A > 1, we regularized the problem
(Ep)(v) by problems of the form

b(Tu(un)) + ATi(un) P> ()
—div a(Ty(uy), Duy) = f — div(F) in Q,

—a(Ti(uy), Duy).n = Ba(x, Ti(uy))
+0Ti(1(uy)) on 09,

where k > (57)o(| fll + 1), which satis-

fies fﬁ( )>’ < § with (b™')y the main sec-
tlon of b~*. Here, | > max{k,¥(k)}, and

Bx(x,.) represents the Yosida approximation
of 5 ( .) defined by

-1

Bale, ) = AT = (1+ 3 5(,.))

Let us consider the operator

Aspp : WHP(Q) — [WHP(Q)]* defined as
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follows:

(Asasta, ) = A [ [T~ Ti(wr)oda

_|_/Qa(Tl(uA),Du,\).ngda:+/Qb(Tz(U,\))¢d$

+ [ A Ti)odo +5 [ Ti(w(u))édo,

for all ¢ € W'P(Q), where (-,-) denotes
the duality pairing between W'?(Q) and
(W2(Q))",

This operator is surjective throughout the
following result.

Lemma 3.1. The operator Asxp 1S
bounded, coercive  and  verifies  the
(M)—property.

Proof. The proof of Lemma 3.1 follows the
same lines as the proof of Lemma 3.1 in
[12]. ]

From Lemma 3.1 and according to [26],
we deduce that the operator A is surjec-
tive. So, for all v € ML(Q) N (WHP(Q))*
there exists uy € W*(Q) such that for all
¢ € WHP(Q)

<A5,)\7b b(U)\) — UV, Uy — (b) S 0. (8)

Taking ¢ = uy — pf(uy — k) as a test func-
tion in (8), where p(.) is an approximation
of signg (.) defined as follow

1 ifr>e¢
1

pr(r) = o7 fo<r<e
0 ifr<o,

and using hypothesis (H2), we obtain

[ W(T )z (un = K dw = [ p(un = k) dv

+/\/ lux P 2unpt (uy — k) do
Q
1

3 /{k<u>\<k+€}
=6 | T () (un = k) do

—/m Bl Ti(ua))ps (ux = k) do. (9)

a(Ti(uy),0).Duy dx

Using the same arguments as in [12], we can
pass to the limit in (9) as € — 0 to obtain

b(T(u))dz < 6 T d
J o MOz <6 [ T ()
+ / fodz — 6 Ty (4 (uy))do

{ur>k} o0N{uy>k}
< fd
- /{U)\>k)} f o

Then,
/{u»k} (b@(uk)) - b(Tl(’f)»dx
= {u)\>k;}( ( ))

As | > k then T;(k) = k. Thus, we have

/ o (@) = /{} (F-b(k)) <

Oask > (b*1)0<]|fHoo+1). From inequality
above, we get

+
/{Wk} {b(Tl(uA)) —b(Tl(k))} dr < 0,1 >
k and then b(T;(uy)) < b(k) a.e. in {uy >
k}. We conclude that b(uy) < b(k) a.e. in
Q.
Similarly, we prove that b(uy) > b(—k) a.e.
in Q. Consequently |b(uy)| < b(k) = C.
We deduce that |uy| < C (since b is contin-
uous and surjective) and then

[uallee < C (10)

where C' is a constant depending on v and
b.

Using the same arguments as in [12], we can
pass to the limit in (8) with A — +o0, to
get

/ a(u, Du). D¢dx+5/ )¢ do

= [odv— [ bwode— [ Gau, (11)

for all p € W'P(Q)NL>*(Q) and p € 0T (u).
To conclude the proof of ii), we prove, using
the fact that u € 0J(u) and same technics
as in [20], (proposition 20) that the measure
u satisfies a.e. x € 0f),

,ur(.iE) € 6](:5, u(a:)) + 81'[7_(30),%(1)]@(93))
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and

@ =y_p, -a.e. on O, 4=y pu-a.e. on I.

iii) We show that D(As,) is dense in L'(9)
ie. D(Az) " = LY(Q).

We have D(A(; p) C L°(Q) C LY(Q) (since
is bounded). Therefore D(A; b)” e LY(R).
Reciprocaly, let’s show that L'(Q) C

D(A57b)||'||1. To this end, it suffices to prove
that

L>(2) C D(Asp)
in L'(Q)).

Let a > 0. Given v € MY (Q) N L>=(Q), if

we set

DA, )" (since L>°(€2) is dense

blug) = (I + adsy) 'y,

then (b(uq), —(v — b(ua))) € Asp.

So, taking ¢ = 0 as a test function in the
definition of the operator A;;, we get

Q\*—‘

/Q a(tg, Duy).Dug dx + 5/ o) (ug) do

- /a e it (12)

Using  hypothesis  (Hz), we have
/[a(ua,Dua) — a(Ua,0)].Dus, > Ao |
Q

Dug, |5
Then, we deduce from inequality (12) that

1 1
Aol [Dug b < —/ Ug dV — —/ b(ua)uq dz
aJa
_5/

(Ua)Uq do —/ Ug AL,
20

—/Qa(ua, 0).Du,, dz. (13)

Using the hypothesis (H3), the monotonicity
of v, properties of u and the L —estimate
ON Uy, We get from (13)

1
Xo||Dug|? < =C" + C. 14
ollDualy < ~C"+ (1)

Vol. 7, n° 2 (2023) 11-25

Using the hypothesis (H3), Holder inequal-
ity and (14), we get

a/Q|a(ua,Dua)| ga/ Aljua])(1 + | Dug|P~

<aCi+a [ (A wa)K/ww)

< aCy + aCz(—C’ + C) »

Pled)

< alCi + a2v CQ< (il)

)

1
7

1
7

§a01+OZP03+OZC4
—>0asa— 0.

On the other hand, if ¢ € D(2), taking
Uq + ¢ and u, — ¢ as test functions in the
definition of the operator Asj,, we get after
adding both inequalities

a/ a(tg, Dug). ngdx—i-ozé/ W(uy)odo

= [odv— [ bu)édz—a [ Sdpa. (15)
Passing to the limit as & — 0 in inequality
(15), we get

a—0

lim Qb(ua)¢:/g¢du, Vo € D(Q). (16)

Since (uq)q is bounded in L*°(€2), there ex-
ists a subsequence (u,, ), such that u,, — u
weakly in LP(£2); so b(ug, ) — b(u). There-
fore, using (16), we get b(u) = v.

As (uq)q is bounded in L>(€2) and b is con-

tinuous, we have

bwa)lly = [ bl < [ bualiz < C.

By Lebesgue dominated convergence theo-
rem, b(u,) — v in LP(2). As a conse-

quence, v € D(A;, )” I

The proof of theorem 3.1 is thus accom-
plished. [
4 Entropy solution

In accordance with [4], we define an entropy
solution of (£,)(v) in the following manner.
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Definition 4.1. A function u € T,*(Q)
is an entropy solution for problem (Ey)(v)
if b(u) € L*(Q) and there exists a measure
€ ME(0Q) with a.e. x € 09,

pr(x) € 0f(x,u(x)) + 011y () 74 (2)] (u(x()),)
17
such that for all ¢ € WHP(Q) N L*(),

/Qa(u, Du).DTy(u — ¢) dx < /QTk(u —¢)dv

— [ b Tiu—o)dr — [ Ti(a—d)dp
U=y pul-ae 00, 4=vy_p,-ae 00

(18)
We define an operator A by the rule:

(b(u),v —b(u)) € A if and only if
{1/ € ML(Q) and

u is an entropy solution of problem (E;)(v).

In the following, we use the notation A,,,
(resp. Yn,.n) instead of As (resp. 1)), where

Uma(u) = () = (), mon €N

Theorem 4.1. The operator A s
m—accretive with dense domaine in L'(£2)
and

A= liminf A,,,

m,n—>—+00

where liminf A,,,, is the operator defined
m,n—+400

by: (w,y) € liminf A, <=

{ Vm,n >0, (Tmn, Ymn) € Amn and

(2,y) = Hminf (mn, Ymn) in X x X.

Proof. The proof of this theorem is carried
out in several steps.

Step 1: A priori estimates.

Let v € MEL(Q). Since v is diffuse, re-
call that v = f — div (F) in D'(Ug) with
f € LNUg) and F € (L¥ (Un))" where Ug
is the open bounded subset of RY which ex-
tend €2 via the operator E.

We approximate f and b respectively by

Vol. 7, n° 2 (2023) 11-25

fmm = (f Am)V (—=n) € L*%(Q2) non-
decreasing in m, nonincreasing in n, and
1 1
bn(o) =b(o) + —0" — -0~ Vo eR
m n
Note that ||fmallt < |If]]i-

Let (an)m C C5°(Uq) be a sequence

n>1

> | , N
such that F,, , — F strongly in (Lp (UQ)) ,
as m,n — +oo. For any m,n > 1 we set

Fm,n = XQFm,n and Vmmnm = fm,n_diV(Fm,n>-

For any m,n > 1, one has v,, €
ME(Q), Vi — v in My(Ug) and vy, €
L*(Q). Furthermore, for any £ > 0 and
any £ € THP(Q),

/Q T3.(€) dvpn

< kC(v, Q).

By Theorem 3.1, v,,,, € R(I + A,,,) and
there exists u,,,, € W'P(Q) N L>(Q) and a
Measure [, , € Mp(0Q) satisfying

(Hnn)r(2) € OJ(T, Umn(2)) +
+8Ih_(x)ﬁ+(x)] (umm(:l:)), a.e. x € 012,

such that for all ¢ € W'P(Q) N L>(Q),

/Qa(um,n, Dt 1).D (U — @) do

+ /dQ wm,n<um,n)(um,n - (b) dg
S /Q(um,n - ¢) de,n - /aQ (Iam,n - é) dﬂm,n
— [ Bt (s = 8) da (19)

and G}/ = vo/- (ftmn)d/ ™ ace. on OQ.
In the following, let & > 0 be fixed. Using
¢ = Upmn—Tk(tm) as a test function in (19)

and applying hypothesis (H;), we obtain

1
P = +
AOA |DTk(um,n)| + m /{99 Tk(um,n)¢(um,n) do

1
- Tk(um,n>w(u;n n) do S / Tk: (um,n) de,n
’ Q

n Jox

_/QTk(um,n)bm,n(um,n) dx — /{)Q Tk(am,n)dﬂm,n

_/Qa(umym(]).DTk(um,n) dz. (20)
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By Gauss-Green Formula and hypothesis
(H3), we have

/ a(Umn, 0). DTk (tm )
Q

Tk(um,n)
/ (/ a(r,O)dr).nda’
a2 \Jo
<

Tk(um,n)
< / A(|r))dr|do
[eJ9) 0
<C, 1)

<

where C is a constant depending on k.
Then, from inequality (20), according to the
monotonicity of ¥, we conclude

o /Q DT (uma)? < C. (22)

Thus (T (tmmn))mn is a bounded subset of
W'P(Q)). Hence, after passing to a suit-
able subsequence if necessary, (Ti(Um.n))mn
is weakly convergent in W'?(Q). Then,
Ty (umn) — v in LP(Q) as m,n — oo.
we may also assume that DTy (umn) — gk
in (LP(Q))" as m,n — oo.

Now, we must prove the convergence almost
everywhere of u,, ,,. As A,,, is T —accretive
in L'(Q2), we have for all m > m/,

/Q (bm/’" (Umt,n) = bm,n(um,n))+ dx
< /Q(fm’,n — fn) " dz.

As f,,, is nondecreasing in m, we have

mZm, = fm’,n_fm,nSO
- (fm’,n_fm,n>+:0-

Then I
m > m = (bm',n(um’,n) - bm,ﬂ(“ﬂ%”)) =

0, i.e. by (Unr 1) — b () < 0 ace. on

Q2. Thus,
(b(um’,n) - b(um,n)> + JL,((Um’,n)—F - (Um,n)+)
()™ — () ) 00 (23)

It is easy to see that the three terms of
the inequality (23) have the same sign, then
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they are negatives which implies that w,, , —
Uy < 0 for m > m' and n fixed. Then
(Umn)m 1s nondecreasing. By the same
method, we show that (), is nonincreas-
ing.

Since (U n)m is uniformly bounded then we
deduce that

Um.p T Uy @S M — +00, Uy | u as n — +00.

By applying Lebesgue dominated conver-
gence theorem, we get

U T W by Uy Uy b Ui, T w0 L),
24)

Therfore, from (24) we get the convergence

of (Um,n) to u in L*(Q2) and also the conver-

gence almost everywhere on (2.

Then, we conclude that vy = Ty(u) and

gr = DTy (u). Therefore, Ty(u) € WP(Q)

for all k > 0. Consequently, u € T*(Q).

Finally, we show exactly as in [9], that

(T (Umn))m.n converge a.e. on €2, and then,

u € T,"(9Q).

Step 2: Existence of the measure pu.

We still need to show the existence of a mea-

sure u € M%(Q) such that i, , strongly

converges to p in ME(Q).

Consider ), ,. as a solution to the following

m,
equation:

1
[ @y D) Depda+— [ (et )pdo
Q ’ ’ m JoQ ’
1
—— [ (up)pdo = /wdvm,n
’ Q

n Jox

[ bl dede = [ G (25)

for all ¢ € WHP(Q) N L>=(9).

We know from Theorem 3.1 that
||5A(.,u;7n)||1 is uniformly bounded by
a constant C independent of A, thus
Bal U p) = fimpn in ME(OQ) as A — 0.
Therefore

.. A
([ tmnl| a2 00) < lli% inf {| 85 (-5 up, ) a2, 00
<C

and we deduce, after extracting a subse-
quence if necessary that p,, — p weakly
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in M%(09Q) as m,n — oo. To establish the
strong convergence of fi,, ,, we use the fol-
lowing comparison result.

Lemma 4.1. Let m >m >0, n >n > 0,
then

A <un . <ur. ae inf,  (26)

A
m,n n

and a.e. in 0S),
Br(s i) < Brles i) < Balesugy ). (27)

Proof. To prove Lemma 4. 1 we consider

the test functions o = p (u> Upy, = u;}m) and
¢ = pZ(up,  — up,,,) in equations (25), cor-
responding to the solutions uﬁm and umn,
respectively. By adding both equations and
dropping some non-negative terms, we ob-
tain (26) taking the limit as € — 0. We use

the definition of ) to deduce (27). O

Note that for the positive and negative
parts, the result of the lemma 4.1 remains
true, that is

:]:B)\<'7ui\n,n> < iﬁ>\(7 mn) < :]:B)\<‘7u1)%1,n)i

Thus, through the previous convergence re-
sult, we have

j::ui:’b,ﬁ S j:/“’L;II:’L,?'L S j:/"L;lIE’L,?'L’

which is similar to say that the regular and
singular parts verify this comparison result.
From this we deduce that

Lo T o i MB(09) as m — oo.

Observe that we get the same results for the
negative parts. This is the end of the proof
of step 2.

Step 3: Convergence results.

We recall that w,,, satisfies, for all ¢ €
WP (Q) N L>(Q)

/ a(Up s D). D dx + — / )gp do
Q

1
- ¢(U%n)80d0 / @den
n Joq ’

—/Qbmyn(umm)goda:—/mﬁ,\ o Umn)p. (28)

Taking ¢ = S(umn — @) as a test function
in (28), where S € P = {p € C'(R); p(0) =
0, 0 <yp <1, supp(p) iscompact},
¢ € WHP(Q) N L>(Q), define

[ = [|lloc + max{|z], = € supp(5')}

and using the same arguments as in [12], we
pass to the limit as m,n — 400 in (28) to
get

/ a(u, Du).DS(u — ¢ d:r;—i-/ — ¢)dp
</ u—¢ dV—/b( )S(u— ¢)dz,
for all ¢ € WHP(Q) N L>(R), and

o € 0F (., u) + 01 4, (u) a.e. in 09,
U=y ul ae ond, @=-~y_ pu, ae. on .

Taking S as an approximation of T}, we get
the desired entropy inequality. Therefore,
we have shown that, for all v € 9L (Q) N
L>*(Q), (I+A,.,) v converge in L'(9) to
an entropy solution of the problem (E;)(v),
hence nlllrgl _11)10fo A C A. For the inverse in-

clusion, we refer to the step below.

Step 4: The accretivity of A.

To prove the accretivity of A, we show as in
( [4], Theorem 4.1) and as in Theorem 3.1
of section 3,

L) = by < [1f =gl (29)

where f, g € L'(Q) provide from the decom-
position of the measures vy = f— div (F}) €
b(w) + Aw and vp = g — div (F}) € b(v) +
A(v).

Step 5: D(A) is dense in L'(Q)

For this, we show that L>(Q) C D(.A)H "
Let u € L(Q2). Consider uy, , and u,, a >
0 such that

bm,n(uf;m) + Ay, 2 b(u),
b(ua) + aAuy 3 b(u).

We know from Theorem 3.1 that D(A,, ) is
dense in L'(Q), then, for all m,n € N*, we
have

b(ug, ) — b(u) in L'(Q) as a — 0.

(30)
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As in ( [4], Theorem 4.1), we show that

b(ugy, ) — b(ua) in L'(Q) as m,n — oc.

Then, we deduce that b(u) € D(A)H'Hl. O

Corollary 1. Under the assumptions of
Theorem 4.1, we have the existence and

uniqueness of entropy solution b(u) for the
problem (Ep)(v).

5 A numerical example

We finally present some numerical results
that we obtained by implementing the influ-
ence of a parameter. As an example of appli-
cation, we made numerical experiments with
the following data which are realistic in the
study of oil and water flow in homogeneous
porous media. We work on the domain
Q= (0,1) x (0,1). Given that S(z,u) =0,
b(u) = u, and the field a is expressed as
a(u, Vu) = A(x)Vu, where A(z) is a con-
tinuous function satisfying A(x) > M > 0,
we can also set F' =0 and f = xq with

1, itz e|0,1]
f(x)_{o, if 2 ¢ [0,1]

is the Lebesgue measure restricted to [0, 1]
and therefore, it is absolutely continuous
with respect to the Lebesgue measure. We
can verify that the hypotheses of Section 1
are satisfied. In this scenario, the problem
(Ep)(v) formulated on Q can be stated as
follows:

{u — div(A(x) Du) =1 in Q

31
—A(z) Dun=0 on O0f). (31

We seek to illustrate the influence of param-
eter A(z) on the numerical simulations of
the problem.

Experiment 1: Numerical Illustration of

2
the solution of (31) for A(x) = sin(%aj)
and changing L.

From examining these graphs, we can con-
clude that the variation in the value of L

has a significant impact on the shape and
amplitude of the solution, highlighting the
importance of considering the value of L in
the analysis of the given problem.
Experiment 2: Here we take b(u) = u?,
then keep G(z,u) =0, a(u, Vu) = A(x)Vu,
with A(x) a continuous function satisfying
A(z) > M > 0, F =0 and f = xq. The
problem (E4)(v) which is formulated on
can be written as follows:

u? — div(A(z) Du) =1 in Q (32)
—A(x) Dun=0 on 0L,

The graphs illustrate the impact of the var-

ious A(z) functions on the solutions. We

can observe that for A(z) = sin(—ﬁx), the

solutions exhibit rapid oscillations with low
amplitude, reflecting the fast variation of
A(z). In contrast, for A(z) = 10, the os-
cillations are less frequent with a slightly
higher amplitude due to the constant nature
of A(x). Furthermore, for A(z) = §(z), the
oscillations are even less frequent and have
a higher amplitude, indicating a slower vari-
ation caused by the constant function A(x)
with a higher value.

These graphs illustrate the importance of
taking coefficient function characteristics
into account when considering problems, as
they have a potent influence on the shape
and dynamics of the solutions obtained.

6 Concluding remark

The numerical solutions of the equation (31)
depend strongly on the value of A(x). The
graphs make it possible to visualize this in-
fluence and to draw conclusions about the
behavior of the system. The first two graphs
are obtained by taking two values of A(x) to
represent situations where the thermal con-
ductivity of the medium varies along the x
axis. Furthermore, when A(z) = §(z) and

2
Ax) = sin(%x) are considered, we obtain

the corresponding two graphs. In the case
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where A(z) = 0(z), the thermal conduc-
tivity varies locally according to the func-
tion d(x). As shown in the graph, the so-
lution follows the same trend as the func-
tion §(z), with higher values in areas where
d(z) is higher. This solution can be used
to examine the impact of local variations
in thermal conductivity on the overall so-
lution. For A(x) = Sin(?x), where L rep-
resents the length of the variation and can
be chosen according to the geometry of the
domain, the thermal conductivity varies pe-
riodically according to a sinusoidal function.
The graph shows that the solution also fits
a sinusoidal function with higher amplitude
in the regions where the thermal conductiv-
ity is higher. This solution can study the
effect of periodic variations in the thermal
conductivity on the solution.

To sum up, based on the graphs, it is ev-
ident that the thermal conductivity of the
environment plays a crucial role in solving
equation (31). Any local or periodic changes
in the thermal conductivity can cause sig-
nificant variations in the solution. These
findings can enhance our comprehension of
the underlying physical phenomena and aid
in devising more effective thermal control
strategies.

References

[1] HW. Alt, S. Luckhaus; Quasilinear
Elliptic-Parabolic  Differential FEqua-
tions, Math.Z. 183 (1983) 311-341.

[2] Ph. Bénilan, P. Wittbold, On mild
and weak solutions of elliptic-parabolic
equations, Adv. Diff. Equ. 1 (1996)
1053-1073.

[3] J. Carrillo, Entropy solutions for non-
linear degenerate problems, Arch. Ra-
tion. Mech. Anal, 147(1999) 269-361.

[4] S. Ouaro & A.Ouédraogo, Entropy so-
lution to an elliptic problem with non-

[10]

[11]

[12]

Vol. 7, n° 2 (2023) 11-25

linear boundary conditions, An. Univ.
Craiova, Ser. Mat. Inf. 39(2) (2012)
148-181.

A. Prignet, Conditions auz limites non
homogénes pour des problemes ellip-
tiques avec second membre mesure,
Ann. Fac. Sci. Toulouse 5 (1997) 297-
318.

K. Sbihi & P. Wittbold, Entropy so-
lution of a quasilinear elliptic prob-
lem with nonlinear boundary condition,
Commun. Appl. Anal. 11(2) (2007)
299-325.

F. Simondon, Ftude de [’équation
Ob(u) — div a(b(u), Du) = 0 par la
méthode des semi-groupes dans L'(€2),
Publ. Math. Besancon, Analyse non
linéaire 7 (1983).

K. Ammar, Solutions entropiques et
renormalisées de quelques E.D.P non
linéaires dans L', Thesis, Strasbourg,
(2003).

F. Andreu, J.M. Mazon, S. Segura de
Léon, J. Toledo, Quasi-linear elliptic
and parabolic equations in L' with non-
linear boundary conditions, Adv. Math.

Sci. Appl. 7(1) (1997) 183-213.

Ph. Bénilan, J. Carrillo, P. Wittbold,
Renormalized and entropy solutions of

scalar conservation laws, Ann. Scuola
Norm. Sup. Pisa 29 (2000) 313-327.

L. Boccardo, T. Gallouét, L. Orsina,
Ezxistence and uniqueness of entropy
solutions for nonlinear elliptic equa-

tions with measure data, Ann. Inst.
Henri Poincaré 13(5) (1196) 539-551.

A.Ouédraogo, FEzistence and Unique-
ness of FEntropy Solution for an
Elliptic ~ Problem  with  Nonlinear
Boundary Conditions and Measure-
data. American Journal of Applied
Mathematics 7(4) (2019) 114-126. doi:
10.11648/j.ajam.20190704.13.

Page 22 to 25



A. Ouédraogo and T. Valea / RAMReS Sciences des Structures et de la Matiére

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Brézis; Analyse Fonctionnelle:
Théorie et Applications, Paris, Masson

(1983).

C.B.Jr. Morrey, Multiple Integrals in
the Calculus of Variations, Springer-
Verlag (1966).

J. Necas, Les Méthodes Directes en
Théorie des Equations Elliptiques,
Masson et Cie, Paris (1967).

Ph. Bénilan, H. Brézis, M.G. Cran-
dall, A semilinear equation in L', Ann.
Scuola Norm. Sup. Pisa 2 (1975) 523-
555.

V. Barbu, Nonlinear semigroups and
Differential Equations in Banach
Spaces, Noordhoff, Leyden (1976).

Ph. Bénilan, Equations d’évolution
dans un espace de Banach quelconque
et applications, Thesis, Orsay (1972).

Ph. Bénilan, B.G. Crandall, A. Pazy,
Evolutions Equations Governed by ac-
cretive Operators, Forthcoming book.

G. Bouchitté, Calcul des variations en
cadre non réflexif. Représentation et re-
laxation de fonctionnelles intégrales sur
un espace de mesures. Applications en
plasticité et homogénisation. These de
Doctorat d’Etat. Perpignan (1987).

[21]

[22]

[23]

[24]

[25]

[26]

Vol. 7, n° 2 (2023) 11-25

G. Bouchitté, Conjugué et
différentiel d’une fonctionnelle inté-
grale sur un espace de Sobolev, C.R.
Acad. Sci. Paris Sér. I Math. 307 (1988)
79-82.

S0US-

G. Dal Maso, F. Murat, L. Orsina, A.
Prignet, Renormalized solutions of El-
liptic Equations with general Measure
data, Ann. Scuola Norm. Sup. pisa 28

(1999) 741-808.

N. Dunfort, L. Schwartz, Linear Oper-
ators, part I, Pure and Applied Math-
ematics, Vol VII.

H. Attouch, C. Picard, problémes vari-
ationnels et théorie du potentiel non
linéaire, Ann. Fac. Sci. Toulouse 1

(1979) 89-136.

Ph. Bénilan, L. Boccardo, T. Gallouét,
R. Gariepy, M. Pierre, J.L. Vasquez, An
L'—theory of existence and uniqueness
of solutions of nonlinear elliptic equa-

tions, Ann. Scuola Norm. Sup. Pisa
22(1995) 241-273.

R.E. Showalter, Monotone Operators
in Banach Space and Nonlinear Par-
tial Differential Equations, American
Mathematical Society, Mathematical
Surveys and Monographs, Vol 49,
ISSN, 0076-5376, (1997).

Page 23 to 25



A. Ouédraogo and T. Valea / RAMReS Sciences des Structures et de la Matiére — Vol. 7, n° 2 (2023) 11-25

%1073 f(x)=1,b(u) = u,B(x,u)}=0 %103 f(x)=1,b(u) = u,B(x,u)=0
55 T T T . T . 55 T T T . T .
5 b 5 ']—\ ” '| 'I (| 1
4.5 1 4.5 1
4 4
W o
§ 35 § 35
== >
3 3
25 25 L L. L L_J J J .J LJ !
2 2
15 I | | ! I | 15 L . L . L .
1] 20 40 60 80 100 120 140 1] 20 40 60 80 100 120 140
X-axis X-axis
f(x)=1, b(u) = u, Bx,u)=0 f(x)=1, b(u) = u, B{x,u)=0
45 T . ; T . 60 T T T ; T .
40 1
5o L
35 -
30r 40
0 257 @
>z0r ES
15 1 20
10 1
107
o f | . . ' o !\\_ | " -
1] 20 40 60 80 100 120 140 1] 20 40 60 80 100 120 140
X-axis x-axis

Fig. 1. Impact of the various functions A(x) on the solutions.
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Fig. 2. Comparison of solutions for different L values.
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Fig. 3. Comparison of solutions for different functions A(z).
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