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Abstract:

This article proposes two epidemic models @ deterministic and stochastic models of Lymphatic
filariasis. For the deterministic model, the basic reproduction number is calculated, the disease-
free cquilibrium of the model is determined and the stability analysed. If the basic reproduction
number is less than one, by using the theorem of Varga (1962) and the standard comparison
theoremof Laksmikantham et al. (1989), we have shown that the disease-free equilibrium is
globally asymp- totically stable; which means that the discase is climinated. In the stochastic
modcl, a unique global positive solution for the epidemic model is obtained. We have caleulated
the threshold parameters which govern the extinction or persistence of the disease. The extinction
of the cpidemic discase is analysed under assumptions. The persistence in the mean of the
stochastic model is also established by building appropriate Lyapunov functions. A comparison
of the two models is made. Numerical simulations are carried out to confirm the analytical

results.
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1 Introduction

Lymphatic filariasis, commonly known as
elephantiasis, is a painful and profoundly
disfiguring disease. The disease is caused
by three species of thread-like nematode
worms, known as filariae-Wuchereria
bancrofti, Brugia malayi and Brugia timori.
Filarial infection can cause a variety of clinical
manifestations, including lymphoedema of
the limbs, genital disease (hydrocele,

chylocele, and swelling of the scrotum and
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penis) and recurrent acute attacks, which
are extremely painful and are accompanied
by fever. In communities where filariasis is
transmitted, all ages are affected. While the
infection may be acquired during child-
hood its visible manifestations may occur
later in life, causing temporary or permanent
disability. In endemic countries, lymphatic

filariasis has a major social and econo-

mic impact with an estimated annual loss
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of one billion and impairing economic ac-
tivity up to 88% according to the World
Health Organization (WHO) 2023. In order
to eradicate filariasis, some authors had al-
ready conducted research on the subject see
[1, 2, 6, 19, 20, 21]. Among these authors
we can retain Bhunu and Mushayabasa [2]
who in their article proposed a model on
Lymphatic filariasis. They studied the lo-
cal stability of the equilibrium points us-
ing as a tool the central variety theory [4]
and theorem 4.1 of the paper by Castillo-
Chavez and Song [5]. In addition, they con-
sidered the transition from the exposed to
the infectious state as a reinfection and a
simple transition, using an incidence func-
tion \,, depending on [,,, and a constant p.
In this work, we first propose a determin-
istic model with a constant A as the tran-
sition rate from the exposed state to the
infectious state. Indeed, we consider that
a human in the incubation phase of Lym-
phatic filariasis, with a low immune system,
does not need to be reinfected to become
infectious. For this model, we establish the
global stability of the disease-free equilib-
rium point by using Varga’s theorem [22]
and the standard comparison theorem of
Lakshmikantham et al [14]. From the deter-
ministic model we reach a stochastic model
by adding four white noises. We study
the existence and uniqueness of the solution
from results on stochastic differential equa-
tions (see [17]) and then study the extinc-
tion and persistence in mean of the stochas-
tic system under certain assumptions. Fi-
nally, we conclude with numerical simula-
tions to evaluate the results.

2 Deterministic model

2.1 Formulation of the deter-
ministic model

This section is devoted to the presenta-
tion of the deterministic model. Consider
N, and N,, population size of humans and
mosquitoes respectively. According to the
epidemiological status of Lymphatic filar-
iasis, we subdivide the human population

into three compartments : susceptible Sy,
incubating E}, and infectious [,. Thus, the
total human population is given by

N, =S, + En + 1.

The mosquito population is subdivided into
two compartments : the susceptible .S,, and
the infectious I,,, so the total mosquito pop-
ulation is given by

Ny, = S+ L.

The human and mosquitoes beings are re-
cruited into their corresponding suscepti-
ble populations at rates A, and A,,, re-
spectively.  Mosquitoes experience natu-
ral death rate at a rate p,, which is pro-
portional to the number in each mosquito
class. Similarly, human beings experience
natural death at a rate uj, which is pro-
portional to the number in each human-
class. The mosquito ingests microfilariae
when biting a human who is infected with
filariasis (elephantiasis-causing nematodes)
at a rate

= ﬁ and Ay = BnOn

A\ = — .
7N, N,

Here, (3, is the average number of mosquito
bites that cause transmission of dis-
ease from infected human to susceptible
mosquito; 0, € (0,1) accounts for reduced
number of microfilariae in the blood stream
of individuals infected but not showing ele-
phantiasis symptoms. Upon getting in-
fected, susceptible mosquitoes enter the in-
fected class I,,,. Filariform juveniles escape
from mosquito’s proboscis when the insect
is feeding and then penetrate wound struc-
ture of a human being at a rate

_ Pm

)\m Y
N

where 3,, is the average number of mosquito
bites that cause transmission of disease
from infectious mosquito to susceptible hu-
man per mosquito.

The compartmental diagram describing the
progression of infection in the different com-
partments is given by figure 1.
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Figure 1: Transfer diagram of the deterministic model
The description leads to the following where
system of differential equations :

dSh(t) (Sh(0)>Eh(())vfh(o)vsm(())v]m(o)) S Ri’

dt = Ah — )\mIm(t)Sh(t) — ,uhSh(t),
dE,(t

%( ) _ AL (8)Sh(t) = (A + p1n) En (1), v B, B
dIy(t "N, N N,

gt ) = AE}, — pndn(t), " "
dSp(t)

o Am (Atdn(t) + A2 En(t))Sm(t)

—Hm S (1),

dl,,(t

20— T (0) + D) Sn(6) — ),

(1)
The following tables give a description of all these parameters.

Table 1: Variables for humans hosts.

Notations Biological description

Sh compartment of susceptible humans
B, compartment of latent humans
1, compartment of infectious humans

Table 2: Variables for vectors hosts.

Notations Biological description

S compartment of susceptible mosquitoes

I, compartment of infectious mosquitoes
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Table 3: Parameters for the humans hosts

Parameters Biological description

Ay constant recruitment rate of human (it also includes births).

rate of passage from susceptible humans to infectious humans

On through blood transfusion

A rate of passage from latent human to infectious human

0, acgoup@ for re'duced number of mimroﬁlariae in t'he' blood stream
of individuals infected but not showing elephantiasis symptoms

L mortality rate on human

Table 4: Parameters for the mosquitoes hosts

Parameters Biological description

A, constant recruitment rate of mosquitoes

B

L Mosquito mortality rate

average number of mosquito bites that cause transmission of dis-
ease from infectious mosquito to susceptible human per mosquito

2.2 Existence and uniqueness
of solution of the deter-
ministic model

In this section we verify that the system
(1) is mathematically and epidemiologically
well-posed for all t > 0.

Proposition 2.1 The positive orthant R’
is positively invariant.

Proof 2.1 Let us show that {Sy(t) > 0}
s positively invariant.

Set x = (Sp(t), En(t), In(t), Sm(t), L. ()T
where T denotes the transposition and con-
sider the function ¢ : RS — R, z +——
—Sh. The function ¢ is differentiable on R®
and we have

Vo(z) = (=1,0,0,0,0) # Ogs for all x €
v ({0},

X(x) =
Ap
—(pn + N ER(t)
AER(t) — pndn(t)

Ay = (M (t) + A B () S (t) — pin S (1)
(A Ln(t) + A2 B (t)) S (t) = pmn L (t)

(Ve(z), X(2)) = =Ap <0.

So the barrier theorem (see [15]) applies
and therefore {Sy(t) > 0} is positively in-
variant for system (1). Similar evidence
shows that {En(t) > 0}, {In(t) > 0},
{Sm(t) > 0} and {I,,(t) > 0} are positively
tnvariant. Then Ri s positively invariant
for the system (1).

Lemma 2.1
The set Tg =T, x '), CRY x RE where

T = {(Su(t), En(t), In(t) € R : Sy(t) +
Ay

Ap
En(t) +1h(t) < —,SK(t) < — ¢ and
n(t) + In(t) ” n(t) uh}
T = {(Sm(®), In(t)) € RZ : Su(t) +
A, Ay .

I,(t) = —, 5,01 < —} is compact at-
tractive posrgtiwely z’nvarz’glnt for the system
(1).

Proof 2.2 By summing the first three
equations of system (1), we get :

, AN _ Ap = pnSp(t) — pnEn(t)  (2)

dt
—,uhIh(t), vVt € RT.
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It follows that :

dNy(1)
dt

= Ah — MhNh(t)' (3)

By applying the principle of solving differ-
ential inequalities developed by Birkhoff and
Rota [3] to inequality (3), we get :

N(t) = M—(M(O)—ﬁ}j) exp(—pint). (4)

By passage to the limit in (4), we obtain :

t—-+o0 Ih
By the same principle, we show that :

Am

lim N, (t) =

t——+o00 Hm

Therefore T'g is positively invariant.

Thus, without loss of generality we assume
that

A A
Nip(t) = =2 et N, (t) = =2, Vt € R™.

Kh Hm

2.3 Existence of equilibria

In this section, we calculate the basic repro-
duction number Ry and equilibria points of
system (1). System (1) have a disease-free
equilibrium given by

A
&0 = (S5, 5. 17, 85, 10,) where S = =",
Hh

A
E)=0,I) =0,8% = " and I, = 0.

m

By using "next generation matrix" method
proposed by van den Driessche and Wat-
mough [10], we arrive to calculate Ry.

Proposition 2.2 The basic reproduction
number of system (1) is

AhAm/\m()\lﬁbh + )\)\2)
RO - 2 9 .
HinHi (A + i)

Proof 2.3 The new infection matriz F
and the transition matrix V' are given by

0 0 AnS2(t)
F = 0 0 0 and
XSO ASY 0

—(A+pm) 0 0
V = A —HUhn 0
0 0  —lm

So the next generation matrix is

—-Fv-!
0 0 A—””‘S,?
_ 0 0 0
by 0 0
2S5, N AALS), A2 0
Apn o (N4 pw)
Therefore
Ro = p(—FV) (5)
SIS0 X (Aafun, + AN1)
fnftm (A + 1)

Replacing Sy and S2, by (5) we get

AhAmAm<>\2,Uh + )\)\1)
RO - 2 9 .
HinHi (A + 1)

2.4 Stability study of disease-
free equilibrium

In this section, we study the stability of of
disease-free equilibrium of system (1). The
local stability result is stated as follow.

Theorem 2.1 If' Ry < 1, then the disease-
free equilibrium point is locally asymptoti-
cally stable.

Proof 2.4 Let us suppose that Rog < 1.
It is sufficient to show that the eigenvalues
of the Jacobian matriz of system (1) at the
point & are negative real part. By a simple
calculation, we show that the characteristic
equation at the point & checks.

(1 + X) (pm + X) Q(X) = 0,
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where,

Q(X)
= X%+ [(pn + A) + (o + )] X2 +
[+ A) (i + ) + pompin] X
—Xo A S X A b, (b + )
— 1 h A AR SYS0 — X AN SOS0

Let

o1 = (pn+A)+ (ftn + fim) ,
oy = (pn+A) (pn + pm) +
HmMn — )\2>\m5251(f]m
03 = fmfin (fth + ) — paA2An Sy S,
~AmAASPSY
We have
03 = fimptn (ftn + ) [1 - Rg] :

Using the fact that Ry < 1, we get

SPS° X (Naptn + A1) < fapptn (N + par)
SnSmAmNapin < nfm (A =+ i)

SPS2 AmAa < (N + )

—SPS% Ao > — i (A + 1)

oy > (pn + A) (ptn + )

i ftn — M (A + Hn)

o9 > pin (Hn + A) -

LR

Y

Thus o1,09,03 > 0 for Ry < 1. In ad-
dition,

0109 > fpplm (A + pin) = 0109 >
P ttan (A + ) (1 = Ro) = o3.

So by applying the Routh Hurtwiz criterion,
we conclude that all roots of ) are negative
real part. Moreover the eigenvalues —juiy,
and —,, are negative. This completes the

Proof.

Let us introduce the notations

hggf o(t) = Yoo,
lim sup ¢(t) = .
t—00
To establish the global stability of the equi-
librium point &, let us begin by stating the

following lemma.

Lemma 2.2 (see [12]) Let ¢ : RT — R
be a bounded and continuously differentiable
function. Then, there are two sequences
{vn} and {t,} such that v, — oo,

tn, —> 00, (V) — Yoo, ¢ (V) — 0
and o(t,) — ¢ and ¢'(t,) — 0 when
n —» 00.

Theorem 2.2 The equilibrium point & of
the model (1) is globally asymptotically sta-
ble when Ro < 1.

Proof 2.5 Let (Sy(t), En(t), In(t), Sm(t), In(t))

be a solution of the system with initial con-
ditions in I'y. According to the lemma 2.1,
[y is positively invariant and therefore we
deduce that

Ay,
Spe < Zhand Sy < —. Using the lemma

Hh, m
2.1, we obtain the following system of linear
inequalities

System (6) can be written as

dY (t) < AY, (7)
where
Ey(t)
Y(t) = I(t) | and
In(t)
A
A tpu) 0 A,
Hn
A = A —Uh 0
A, A
—X A —lm
L, L,

The matriz A is a Metzler matrix and its
linear decomposition is given by : A =
F+V, where
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A
0 0 L.
Hh
F = 0 0 0 and
A, A,
—X2 —\ 0
Hm Hm
—(A+pn) O 0
V = A —Uh 0 .
0 0  —lm

Moreover V' is a Metzler matrix and
therefore inverse invertible

/\J&Mh
pii=| —— 2 -
PN+ pn) .
0 0 —_
Hm

We also note that F > 0, —V~!
0 and Ry = p(—FV~'). Since Ry
p(=FV~1) < 1, then the theorem of Varga
(see [22]) allows us to deduce that A is
asymptotically stable, i.e. the eigenval-
ues of A are negative real part.  Us-
ing the standard comparison theorem of
Laksmikantham et al. see [1}], we de-
duce that Ey(t) — 0,1,(t) — 0,1,, —
0 whent — oo and therefore E,° = 0,
I;° = 0 and Iy = 0. According to the
lemma 2.2, there ezists a sequence {t,}
such that t, — 00, Sp(tn) — Sheos
Sm(tn) — Sme and Sp(t,) — 0,
S! (tn) — 0 when n — 0. Thus,

v

i /LhSh(tn)’

— X En(tn)Sm(tn) — ttmSm(ts).
When n — oo, then
0 = An— Al ooShoo = HaSh oo
0 = A — AMdhoo + ABhoo)Sm o
—  mSm o
It follows that
0 > Anw— Al Shioo — HnSh oo
0 > Ay — (ML 4 ME)Sm o
LS oo

Thus

A A

=h < Sh,oo < S}C;O < 7h7
Hn Hn
Hm ’ Hm

Thanks to the fact that E}° = 1;° =17 =0
A A
and S° < ZMoge < I

It follows
Hh A Hm A
. _ 4Yh . _ m
that tlggo Sp(t) = — and th_glo Sm(t) = —.

M, Hom
So (Sh<t),Eh(f}),[h(t),Sm(t),[m(t)) — 50
in 'y when t — oo. This completes the

proof.

Let us now introduce the proportions

alt) = 2= B0,
w0 = 29,0 =220,
() = 20,

and also, taking into account the equalities
sp(t) +en(t)+in(t) = 1 and s,,(t) + i, (t) =
1. Thus system (1) reduces to

dSCflLt(t) = pin — B1(t)im(t)sn(t) — pnsn(t),
di}ilt(t) — Brim(t)sn(t) — (A + pn)en(t),
;hfhgt) = Xep, — ppin(t),
S;t<t) = i — (Bsin(t) + Baen(t))sml(t)
» _Mmsm(t)a
d%;lmt(t) _ (ﬁgih(t> + ﬁth(t))Sm(t) - ,Umim(t)a
where,

B1 = Bms B2 = OnBhy B3 = Bh.

3 Stochastic model

We give some basic theory in equations dif-
ferentials stochastic (see [16]). Throughout
this paper, unless otherwise specified, let
(Q, F,P) a complete probability space with
(Fi)e>o filtration that satisfying the usual
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conditions. We note
Ri_ = { (xla X2, T3, T4, x5> € R5 :

x1 > 0,29 > 0,23 > 0,24 > 0, 25 >O} and
X+ = {(w1,$2,$3,$4,$5) € Ri . I +l’2+
T3 < 1,a4+ a5 < 1},

The following stochastic system is con-
sidered

dX(t) = f(t, X(t))dt + g(t, X(t))dB(t), (9)

for t > to withX(ty) = Xo € R", B(t)
denotes n dimensional standard Brownian
motion defined on the above probability
space. Define the differential operator £
associated to (9) by :

ov(t, X ov(t,X

LV(t,X) = (dt )+fT CEX )
1 70V (t, X)

‘I— §TT [ W'g Where

V(t,X)elC”? (R xR™).

(10)

The stochastic version of the deterministic
system (8) is given by :

dsn(t) = [pn = Brim()sn(t) — pnsn(t)] di+
Pi(t),

den(t) = [Brim(£)sn(t) — (A + pn)en(t)] di+
Pa(t),

din(t) = [Aen — punin(t)] dt + moen(t)dBa(t),

dsin(t) = [ptm — (B3tn(t) + Baen(t))sm(t)] di
— S (1) dE + P3(t),

din () = [(Bsin(t) + B2en(t))sm(t)] dt
— L () dt 4+ Py (t)

where B;,j = 1,4 are mutually independent
Brownians and 7;,j = 1,4 are their respec-
tive intensities and

Pi(t) = —mim(t)sn(t)dBi(t);
Pa(t) = muim(t)sn(t)dBa(t)
—1en(t)dBy(1);
Ps(t) = —n3in(t)sm(t)dBs(t)
—NaepSm(t)dBy(t);
Pu(t) = nsin(t)sm(t)dBs(t)
+n4en8m(t)dBy(t).

3.1 Existence of a positive
global solution

In this section, inspired by the method in
[8, 18], we show that there is a unique global
positive solution of system (11). We estab-
lish the following theorem.

Theorem 3.1 For all initial values
2(0) = (s4(0),€x(0),4r(0), 5 (0),im(0)) €
xt, there is a unique solution z(t) =
(Sh(t), En(t), In(t), sm(t),im(t)) for the sys-
tem such that

P(xz(t) € x*) =1 for allt > 0.

Proof 3.1 Let’s call it

np(t) = Sp(t) + En(t) +in(t) the sum of
the respective proportions of susceptible,
infected and recovered humans at time
t and n,(t) = su(t) + in(t) that of
the proportions of susceptible and infected
mosquitoes at time t.  For all x(§) =

(sn(€),en(€),in(&), sm(&),im(&)) belongs to
R’ a.s we have :
dnp(§) = [ — pnn(§)]d€ a.s.,(12)
(&) = [ — o ()] € a.5(13)
Using Gronwall’s lemma, we get :
nn(§) = 1+ (nu(0) — 1) exp(—pnf) as.,
nm(§) = 14 (n,(0) — 1) exp(—pmé) a.s.

Since (s1(0),en(0),i,(0), 5, (0),4,(0)) €
X, then ny(§) < 1 a.s. and n,(§) <1 a.s.

o~~~

11 )So, x(€) € (0,1)° for all € € [0,t]. More-

over, since the coefficients of system (11)
are locally Lipschitzian, there is a unique
solution (Sp(t), En(t), In(t), sm(t),im(t)) on
any fized interval [0, t].

Let x(t) = (Sp(t), Ex(t), In(t), sm(t), im(t))
a solution of system (11) where, t €
[0,7.) and 1. is the explosion time. To
show that x(t) is global, we need only
show that 17, = oo. To this end, let
ap € (0,1) be sufficiently small such that
(51(0), €n(0),7n(0), 5m(0), im(0)) € (0,1 —
ag)®. For 0 < a < ayg, define the stopping
time 1o through
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where in this paper we assume that inf () =
oo. Clearly 1, is increasing as o — 0.

Set T = lima_o07a, hence 7o, < To
because 17, < T.. If we can wverify that
Too = 00 a.s, then 7, = oo and z(t) =

(Sh(t)veh(t)aih(t)>sm(t)aim(t)) S XJF) vt >
0. If this assertion is not true, then there
ezists a pair constant T > 0 and ¢ € (0,1)
such that

P({ree <T}) > . (14)

Therefore, there is an positive constant
ay < aq such that

P({r, <T}) >, Vae (0,a1]. (15)

Define a non-negative C*—function w of
e xt in RT as follows

w(x(t)) = ws, + we, + w;, +ws,, +w;,,,

where,
Wsy, = — 1n<3h(t))>
we, = —In(en(?)),
Wy, = — hl(ih(t))a
ws, = —1In(s,(1)),
w;, = —1In(iy(t)).

Let o € (0,cp] and let T > 0 be arbitrary.
Using Ito’s formula [17] and for all t > 0
fized and & € [0,1], we get

o —Hh .
dwsh — [Sh(g) + Blzm(g) + Mh] d€

1
Ml () + i (E)AB1(

[Brim (&) + pn] d§
+;nfifn(§)d§ + Mim(§)dBi(§)

(81 + s+ ) e

+mim(§)dB1(§),

IN

IN

thanks to the fact that i,, € (0,1).
dwe, = [=Biim(€)sn(€)er (€) + (A + )] d¢

+ [ ©©e(€) + 318 de
—Mim(€)sn($en (B ()

+12dBs(&)

[ g+ g8 + e (©)] de
~1im(§)sn(E)er (€)dBi(€)

+n2d B> (&)
thanks to the fact that i,,, s, € (0,1).
dwi, = [=Aen(€)in'(€)] de
+ [+ SBed©i2(6)] de
—men(€)i (€)dBa(€)
< (it i) de
—naen(€)iy, (€)dBa(€)

since ey, € (0,1). As the applications e, and
1y are continuous then by using the theorem
of Weierstrass, we obtain

IN

inf e = < o0 and
¢€[0,max{T, 7o }] h(g) !

inf 1 = Cy < 0.
£€[0,max{T,7a}] h(g) 2

So,
dws, + dwe, +dw;, < ki(§) + 91(£)dBi(§)
+92(§)dBa(§),
where
kidé = (B4 3pn+ A)d€ (16)
+; (n +m3 +mier® + myes®) d,

9(&) = (mim(€) = min(©)sn(©ey ' (€))
9(8) = (mdBa(€) —men(©)iz ' (€))

Likewise by Ito’s formula, we get

dw, = |22+ (Boinl€) + Baen(©))] dé

m

1 1
+ [ + SRR + JeR(6)] de

+n3ir(§)dB3(§) + naen(§)dBa(§)
< (B4 Bt p + i+ ) e
+n3i1(§)dB3(§) + naen(§)dBa(§),
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and

dwim =

—(Bsin(€) + Been(€))sm()ir] dé

SRR, (€)i2(6)| de

+ SR OE)i2E)de

—1in(€)iy, (€)dBs(€)
—maen(§)in (§)dB

o+ 5RO +
—13in(€)ir, (€)dBs(€)
_774€h(5)i;zl(§)d34(f)-

|
+ [uer

g
~
78"
~

IA

Since the applications i, is continuous then
by using the theorem of Weierstrass, we ob-
tain

inf i (&) = c3 < 0.
£€(0,max{T,7a }] (5) 3

So,

dws,, + dw;,, < k(§) + g3(€)dBs(§)

+94(§)dBa(§),
where,
kodé = ; (73 + 13 + s + mies”) d€
+ (53 + 52 + 2fim ) d§
93(§) = ( "73Zh(§)zr_nl(€)> )

9a(§) = (meh(f) — men(€)in' () -

Therefore, we get

(k1 + ko) d€ + ) g;(€)d

J=1

dw(z(£)) < B;(£)-(17)

Integrating above inequality from 0 to T, AT
on both sides yields

w(@(ta AT)) < w(z(0))

+ (lfl + ]{2) (Ta A\ T)

3 [ gean, ).

J=1

Since the applications ey, 1, and i,, are con-
tinuous then by using Weierstrass theorem,
we get

hj < oo, j= 1,4. (19)
Hence

w(@ (1o AT)) < w(x(0)) + (k1 + k2) (ta AT)
+ 352 hy By (t).

By taking the expectations on both sides, we
get

E(w(z(ra AT))) < w(z(0))

<
+ (ki +k)E(raAT)
< w(z(0)) + (k1 + ko) T

Set Qo = {1a < T} for0 < a < ay. From
(15) we have

P(Q) > C. (20)

Noticing that every w € 2, some compo-
nents x(7,) equals o or 1 — a. Thus,

w(z(7a)) 2

Furthermore, we have

[—Inao] Alln(l—a).

E[w(z(re AT, w))]

[ o(Ww(z(1a AT, w))]

+E [15, <w>w<x<m AT,w))]

E 1o, (w)w(z(ta AT, w))]

E[lq, (W)w(x(%w))]
P(Q)[—Ina] Alln (1 — «)]
([-Ima] Aln(1—a)],
where 1q,_ denotes the indicator function of

Qo and Q, = {70 > T} for 0 < a < a;.
Consequently

w(x(0)) +
Cl[—Ina] A

Letting o« — 0 in (22) leads to

VvV IV IV IV

(k1 + k)T > (21)
In(1-—a«)]. (22)

0o > w(z(0)) + (k1 + ko) T = 00.a.s., (23)

which yields the contradiction. Hence we
derive 7o = oo .a.s. This means that the
solutions x(t) will not explode in a finite
time a.s. This completes the proof.
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3.2 Extinction of filariasis

In the deterministic model, the value of Rq
guarantees the persistence or extinction of
filariasis. When Ry is less than one, the
disease-free equilibrium point of the sys-
tem is globally asymptotically stable. This
means that the number of cases of filariasis
infection decreases until it becomes zero. In
this section, we determine some criteria for
the extinction of filariasis in the case of the
stochastic model. Set

Bin®
2(m + 2\ + 2u)’

Ry — 1 (53774+52773>7

Ry =

Hm 773 7]4
. M_2 2 .
Ry = ““.— and RE” = R{V RV Ry
772

Theorem 3.2 For any solution z(.) =
((shcg.),eh(.),ih(.),sm(.),im(.)) with initial
condition
2(0) = ((s1(0), €n(0),n(0), 5m(0),im(0)) €
x* holds

1 t 1
lim sup M < = (77% + 2\ + 2uh) X
t—r00 t 2
(Rg—1)a.s.,
In(i .
lim sup n(in(t)) < (RB - 1) a.s
t—o0
In (2, (¢
lim sup (im (1)) < pm (RGE — 1) a.s.
t—o0
Thus if

R <1, (24)

hold then x(.) converges exponentially
almost surly to the equilibrium point
(1,0,0,1,0) with probability one.

To verify theorem 3.2, we first present some
lemmas which will be used later.

Lemma 3.1 [16] Let g = (g1, 92, -, m) €
L? <R+,Rlxm>, and let T, o and 0 be any
positive numbers. Then

P sw [ [ ot =€ [ g(u) P dul

0<t<T

> 9} < exp(—ob).

Lemma 3.2 [17] Let {Ai},~, and {U},~,
two increasing continuous processes and
adapted with Ag = Uy = 0 a.s. Let {Mt}t>0
a local continuous real-valued martingale
with My = 0 a.s. Let £ a non-negative vari-
able and Fy — mesurable. Define

Xt:§+At—Ut+Mt, fO’r'tZO

If X, is non-negative, then

{ lim A, < oo} C
t—4o00

{ lim X; exists and fzmshed}

t——+o0

{ lim U, < oo} a.s.,

t—-+o0

where, C' C D a.s. means P(CND) = 0. In
particular, if lim;_,, . Ay < o0 a.s., then,
Yw € Q, limy_,, o Xy(w) exists and finished
and limy_, o, U; < 00.

Proof of theorem 3.2
Step 1 Applying Itd’s formula to the sec-

ond equation of system (11) and then tak-
ing an integration from 0 to t we get

In(Ey(t)) (25)
= [ Bim©n©e €k 0)
j/A+mﬁé%W€ (27)

—/2 2(&)er(€)de
+1In(ex(0 )) + My (t) — n2Ba()(28)

where

M) = [ min (€€ (©)BI(€) (29)

is a continuous martingale (see [17]), whose
quadratic variation is given by

(Mo, M) () = [ 2O ©dle),

For every integer p > 1, using the exponen-
tial martingale inequality 7.e lemma 3.1, we
see that

7?{ sup |:M1 - le (My, M) (t)]

0<t<p

1
> 4lnp} < p—
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An application of the Borel-Cantelli lemma
(see [17]) then yields that for almost all
w € () there exist a random integer p, =
p(w) > 1 such that

1
sup |(Mj — — (M, My) (t)] < 4lnp,
0<t<p 4
if p>po .
That is,
1
Mq(t) < 1 (My, My) (t) +4Inp(30)

forall 0 <t <p,
p > po almost surly.

(31)
(32)

Substituting (32) into (28) deduces that for
allo§t§p7p2p07

en(t) oy ~1
0 /0 Brin(€)sn()er  (€)de
—AL%Hm+;%M£
IR AAGIG IR GL:
+4Inp + M (t)
—12Bsy(t) .a.s.

Set w1 (€) = im(€)sn(§)e; ' (€), then

R E) + frun (€)
1, N (B

o [ (1ate)-
B

T
It follows that
En(t) [51 1 ]
< + 22+ 2
en(0) 72 o2 (772 Nh)
—1aBs(t) +41np .a.s.,

forall 0 <t < p, p> Py almost surly.
Therefore, for almost all w € Q, if p > po,
p—1l<t<p,

i) ()]

771 771

<

In

1 1[5 1
—InE,(t B (2420 +2
FnEn(l) < = 1[771 5 (13 + 22+ Mh)]p
1 In 1
_mEBﬂ)+4 P + 5 Iney(0)

Letting t — o0, p — oo and using
the well-known law, the strong law of large
numbers (see [17]) to the Brownian motion

we derive
By (t
lim sup 2(1) =0 a.s. (34)
t—o0 t
Letting p — oo then
: Inp
lim sup =0 .a.s. (35)
p—oo P —

Taking the superior limit on both sides of
(33) combining with (34) and (35) we get

In(E,(t z
lim sup In(£(t)) < 5 -
t—o0 t m
1
1
=§@+MHMX
(Rg—1) a.s

Step 2 In a similar way, we apply the Ito’s
formula to the fourth equation of system
(11) and then take an integration from 0 to
t, which gives

i) = in(0)+ pmt
+ /tﬁsz’h Jom (€)1 (€)d¢
- [ SRR )
+ / Bren(©)5m(€)ir! (€)1
—5 [ RO ©i )
Myt >+M4< >,
where

M) = | tngzh@)sm(f) LdB(©), (30)
0= [ mensn(©i (€ABu(E), (31)

where, M3(t) and My(t) are a continuous

a.s.(33) local martingales.
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Set

0 ={ﬁ&u Jsm ()i (€)de

—5 [ RO
—pmd§ + M3< )7
wilt) = / Baen(€)sun(€)iry! (€)de
5 [ @ ©i7€)de

+My(t) + In zm(O).,

Using the same method developed in step
1, we deduce that

2
t
limsupyg—() < (ﬁg> — fbm @.5.(38)
t—00 t UE!
t
lim sup palt) < <64> a.s (39)
t—00 T4
Consequently,
(i
lim sup (im (1))
t—00 t

Step 3 Using the same calculation tech-
nique in step 1, we end up with

mit) <A>2 — iy a.s. (40)

lim sup
t—o00

2
= (R —1) as.(41)

Hence if
R <1, (42)

is true, the results of the steps (1-3) lead to
the conclude that ep(t), i (t) and 7,,(t) will
tend to zero exponentially with probability
one.

Step 4 In this step we need to show that
3.2, we just need to show that

lim (1 — s,(t)) = 0. a.s. (43)

t—o00

By integrating the two sides of the first
equation of system (11), we get

L=sn(t) = 1=s1(0)+ [ Bisu(€)im(€)de
- /Ot (1 — sp(§))dE
+f s (€)in (€)ABA(©).

Since sp(t) < 1, then we get

lim /,Blsh im( d§< hm /ﬁﬂm

t—+o00

Moreover, since i,,(t) almost surely con-
verges exponentially to 0, then there exists
c1,co > 0 such that

im (&) < c1exp(—c€) V€ > 0.
It follows that,

t

+o0
lim [ i (€)de < /0 ¢1 exp(—co€)dE (44)

t—+oo Jo

Thus,
t
Jim [ s €)in(€)dE <

400
51/0 c1 exp(—ce€)d€ < 0.

Using the results of the lemma 3.2, we come
to the conclusion

tl}eroo(l —sp(t)) < o0 a.s.,

lim /tuh(l—sh(f))dg < 00 a.s.

t—+o0 Jo
e /()“(1—%(3))615 < 00 a.5.(45)

Assume that (sp(t)),>, does not converge
to one. Then there exists C' C  with
P(C) > 0 such as, Yw € C,

liginf(l — sp(t,w)) = o(w) > 0.

Thus there exists T' = T, > 0 such that

(1—sp(t,w)) = ;Q(w) > 0, Vt > T. Hence,

[T seonis = [0l
+ / (1 —sp(& w))dé
> /T (1= (g w)de

I
8
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This implies that C C D where, D =
{w €Q: /00(1 — sp(&,w))dé = oo}. Yet
inequality 0(45), P(D) = 0, leads to a con-
tradiction. So, tli)rglo(l — Si(t)) =0 a.s. Us-
ing similar reasoning, we show that lim (1—

t—o00

$m(t)) = 0 a.s. This completes the proof.

3.3 Persistence in mean of fil-
iriasis
Before establishing the persistence results,

we will state a lemma that will be used in
the proofs.

Lemma 3.3 Let (s5(.), en(), in () $m (), im ()

a solution of (11) with initial conditions

(s1(0), €4(0), i, (0), 5 (0), 4, (0)) € (0;1)°.
Then

lim _— (46)
t—+oo
lim en(t) = 0,
t—+oo
(T
im 20 (47)
t—+oo ¢
lim S8 _
T
"
lim (t) = 0. a.s. (48)
t—+oo

Proof. Our approach is inspired by the
works of Yanan Zhao and Daqing Jiang (see
[23]) and Yanli Zhou and Weiguo Zhang
(see [25]).

Let u(t) = sp(t)+en(t)+in(t)+Sm(t)+im(t).
Define V(u(t)) = (1+u(t))’ where, 0 is a
positive constant.

Applying I[t6’s formula to V', we get

AV (u(t)) = 01+ u®)’ 'du
+;e(9 — 1)1+ u(t)" ™ x
(du(t))*.

We have

du(t) = (n =+ pm — prnn(t) — prmnm(t)) dt

where,

nh(t) = Sh(t) + Gh(t) + ih(t)
and n,,(t) = sp(t) + i (t).

We get
(alu(t))2 =0.
So,
AV (u(t)) = (1 +u(t)’ ' du
= LV (u(t)) dr
Where,

LV (u(t)) < 0(1 +u(t))’”
J -

[(ktn + pim) — pnmn(t) umnm(t)

Set gy = max (pn, fhn) » o = MiN (fip, fn) -
The following mark-up is obtained

LV (u(t)) < 61+ u(t)’" x

[2N1 - Mth(t) - anm(t)]
< 01+ u)’ ! x

2011 — p2u(t)]

< (1 +u(t)"? x
[(1+u(?)) (2 — pou(t))]
< 01 +u(t)’? x
201 + (2p1 — p2)u(t)]
—pgu?(t).
It follows that
AV (u(t)) < (1 +u(t)"? x (49)
2001 + (201 — po)u(t)] dt
—ppu® (t)dt. (50)

For p > 0, we get

d [V (u(t))] (51)
L[eV (u(t))] dt

peP'V (u(t)) dt + e’ dV (u(t)) dt
pe’ (1 +u(t))” (52)
+0eP (1 + u(t))’ 2 x

201 + (2p1 — p2)u(t)] dt

—ppu® (t)dt

0P (1 + u(t))’ 2 x

[5(1 +u(t))? — Wﬂ(t)} dt

+[(2p1 — p2)u(t) + 2p] dt
e (1 + u(t)’* x

(o)
(21 — po + 2§)u(t)dt

+ (2#1 + 0) dt
OeP' H dt, (53)

IN

IN

IN

dt

IN
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where,

H := sup {(1 + u(t))e_Q{ - (/,62 — Z) u?(t)

+(2u1 — p2 + 2%)u(t) + (2u1 + g) |}

Since  (sn(.),en(.),in(.), sm()im(.)) €
(0,1)°, then u(.) € (0,25).

So, 0 < H < oo. Passing to the integral
between 0 and ¢ in (53), we get

[y i) de

0

t

b< [ oo, (54)
0

OHe?  OH

"'V (u(t)) <V (u(0)) + ’ e

It can be deduced that

OHe?  OH
7 (55
p b

Ee"V (u(t)) <V (u(0)) +

That is to say,

E[(1+u(t)] < W + 95 (56)
< (14 u(0))’ + 6H.

Set C' = (1+u(0))’ + 6H.
Then,

E[(1+ut)’] <C (57)

vV ¢ > 0 sufficiently small, p = 1,2, 3, ..., by
integrating (50) between pd and t, we get

(1+u(®)’ < (1 +u(ps))”

+/pf59(1 +u(€)’?
[2u1 + (2p1 — p2)u(§) — uqu(é)] ds.

Taking the upper bound for ¢ between pd
and (p + 1)J, we get

sup (1+u(t)’ < (1+u(ps))’

pd<t<(p+1)§

sup ‘ / (14 u(€
6<t<(p+1 pé
[2u1 + (21 — p2)u(€) — pou®( } dé].

Taking the mathematical expectation of
both sides of the latter inequality we get

< B|(1+ u(pd))’]

EL sup (14 u(t))
0<t<(p+1)

+J,

where,

J = E{ sup

pd<t<(p+1)6

[ o+ ute)

0
20+ (21 = pa)ul€) = ()] e

01+ u(e))

pd

= E{ sup ‘

pd<t<(p+1)d

<1 + () (21 — pou(é déH

= sup ’ / (1+u(g
p(5<t< (p+1)s ' /pd
(2u1 — pau(€)) dé]|

= sup ‘ / (1+u(€
p5<t< p+1)8 ' J/pd

201 — ol
e

Set : [ =6 sup
pd<t<(p+1)d

20 — Mzu(f)
15 u(©) ‘ (58)

It follows that

J < [FE sup
Lpd<t<(p+1)d

[+ uoa|

< IE /p(”m(lw(f))@ds]

|/ pd

< IE0 sup (1 —|—u(§))0]
| pd<&<(p+1)d
< lOFE L sup (1 —i—u(ﬁ))e]
5<E<(p+1)0
< léEL sup (t»ﬂ.
0<t<(p+1)é

As a result

S<t<(p+1)6

+ u(pd))’]

+I0F L sup
0<t<(p+1)6

Lsup 1+u(t))9]
< Bl
(1+u(t))9].

1
Choose 6 > 0 such as I < 2 then

<

E |-D6<ts<u(11))+1)6 (1+ u(t))e
2F [(1 + u(pé))e} .
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By using (57), we get

EL sup  (L4+u()’] <2C.  (59)

d<t<(p+1)d

Let €, an arbitrarily chosen positive con-
stant. Applying Markov’s inequality, we get

pd<t<(p+1)d

Pl sw () > 00}

- E [Sllpp(sgtg(pﬂ)a (1+ U(t»e]
AS (po) e

2C
(po)

Let U, = { sup (14u@®) >
pd<t<(p+1)d
> 2C

(p5)1+6“} then iP(Up) < z_:l W

Since 1+ ¢, > 1 then Ziueu < oo the
p=1 (pé)
Borel-Cantelli lemma (see [17]) yields that
for almost all w €

(60)

< (61)

6 €u
SUDps<i<(pr1ys (1 +u(t))” < (p(S)H ;
p=1,2,3, .. (62)

Since this inequality holds for all p, then
there exists a positive inter py = po(w) for
almost all w € § such that (62) remains
true, Vp > pg. Therefore, for almost all
we, if p>pyand pd <t < (p+ 1),

In (1 + u(t))’ (14 €,)In(pd)
Int - In (pd)
= 1+e€,.
So,
0
limsupln(lru(t)) <1+e€, as. (63)
t—00 n

Let’s make ¢, — 0, we get

In (1 o
lim sup In (1 + u(t))”

<1, a.s.
t—o0 Int

For 6 > 1, we get

In (u(t In (1 t
i sup ) o g )
t—s00 Int t—00 Int
1
< 5, a.s

1
That is to say, for 0 < v < 1 — o’ there
exists a constant 7' = T'(w) such as, Vt > T

In (14 u(t)) < <; + 7) Int. (64)

1
That is to say, for 0 < v <1 — i there ex-

ists a constant 7' = T'(w) and a set {2, such
as P(Q,) >1—vand, Vi > T, w € Q,,

1
In (u(t)) < <9 4 7> Int. (65)
As a result
1,
lim sup ult) < lim sup A 0. (66)
t—00 t—00 t

This leads to

lim @ =
t—oo t
lim sp(t) + en(t) + in(t) + sm(t) + im(t) _o
t—o0 t
a.s.,

thanks to the positivity of sy, ep, i, s, and
Im. S0, We get

t t (T
lim Sh( ) = lim eh( ) = lim Zh( ) =
t—oo ¢ t—oo ¢ t—oo ¢
lim sm(?) = lim im(?) =0 a.s.
t—oo t—o00

This completes the proof.

Lemma 3.4 Let

(sn(.)sen(.),in(.)s sm(.),im(.)) a solution of
system (11) with initial conditions

(51(0), €4(0), 74 (0), $m(0), i (0)) € (031)°.
Then

tim 5 [ (@15 (©B(€) =0 a5,
tim [ en(€)ir ()48 = 0 as
Proof. Let

t

Mit) = [ in(©n(©er ©dB(©),
Ms(t) = [ en(©in' (¢

)dB&).

o
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As the maps iy, s, and i,, are continuous,
then by using the Weierstrass theorem, we
get

sup {im(&)sn(§)e; (§)} = C1 < o0,

0<e<t

Thus

(M(t), M1(t)) < Cit. a.s. and
ey 0. M)

t—o0 t

< (. a.s.

By the strong law of large numbers for local
martingales, we conclude that

lim Mu(t)

t—o0 t

= 0. a.s. (67)

In the same way we get

lim Ma(t)

t—o0 t

=0. a.s. (68)

Hence the lemma has been established.

Lemma 3.5 Let f € C ([0;00) x €, (0, 00)).

If there are positive constants Ao, X and T
such that

I f(6) 2 M=o [ f()d+ (), (69)

Vi > TwithF € C([0;00) % ,R),

F(t
lim Q =/ as and \+¥>0. Then
t—oo
hm mf / )\ + E
Proof

Our approach is inspired by the work of
Zhaoa, Daqing Jiang and Donal O’Reganc
(see [24]) and Liu Huaping and Ma Zhien
(see[13]) .

F
Note that tli}m it) = ( a.s. then for ar-

bitrary 0 < € < A + ¢ there exists a Ty =
To(w) > 0 and a set 2, such that P(§2,) >0

Pt
and |(>—£ <cforallt > Ty we Q.

Let T =T V Ty and ¥(t) = /Otf(g)dg for

t>T, weQ,.
Since f € C'([0,00) x €2, (0,00)), then 1 is

differentiable on [T, c0) a.s. and

d(t) = f(t) >0fort >T,w e Q,.
dip(t)
dt

Substituting and ¥ (t) into (69), we

have

In (dwt)> > M= A(t) + F(t)

dt
> (A—e+ Ot — (1),
fort >T, weQ,.

So

di(t
exp (Aot)(t)) lfh(j) > exp(A—e+0)t,
fort > T,w € Q,.

Integrating this inequality from T to t re-
sults in

Aot exp(ot (1) — exp(oth(T))] =
lexp((A+ € — e)t) —exp((A + £ — €)T)].
This inequality can be rewritten into

exp(Ao¥(t)) >
)\0()\ + 0 — 6)71 X

[exp((A+ £ — €)t) — exp((A + £ — €)T))]
+ exp(Atp(T).
Taking the logarithm of both sides yields
Y(t) = A In (A + £ — )7 x
exp((A+ £ = €)t) + Ap,

Ap = exp(Aoy(T))
oA+l —e)exp(A+ £ —e)T)

or

/Ot F(OAC = A I Ao(A + £ — €)1 x
exp((A+ 0 —e)t) + )\7}, fort >T,weQ,.

Dividing both sides by ¢t > T > 0 gives

t
t*l/ FQAC > A"t I oA+ £ — )" x

0
exp((A+ 0 —e)t) + )\T}, fort >T,weQ,.
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Taking the limit inferior of both sides and
applying L’Hospital’s rule on the right-
hand side of this inequality, we obtain

t —
ntxgigft—l/o F(O)d¢ > W for w € Q.
Letting € — 0 yields
: A0
lim inf ¢! / FO)de > 28 for as. (70)
t—»00 0 0

This finishes the proof of the lemma.

We now turn to the study of the persis-
tence in mean of system (11). To this end,
we present a definition of persistence in
mean that can be found in [7, 24]. For
future needs, define the following thresh-
old parameter (this threshold parameter is
derived from the proof of the theorem 3.3
please see (80)),

_ 1
Ri= o (At s+ 508 +en?))
and formulate the following hypotheses

(H1)  there exist € > 0 such as
| sn(t)im(t)ey " [< e

(Ha)  im(&)e, (6) > 1,

(H3) RS < 1.

Theorem 3.3 Let

(sn(.)sen(.),in(.), Sm(.),im(.)) a solution of
system (11) with the initial conditions
(‘Sh(o)? eh(o)v ih(o)v Sm(O), Zm(())) S (0; 1)5'
If the assumptions (H1) — (Hs) are verified
then

liminf (e (t)) > 0 a.s.,

t—o0

liminf (i (t)) > 0 a.s.

t— 00

Proof
Applying the integral between 0 to t the two
sides of the three first equations of system

(11) we get

sp(t) — sp(0)

S == By lin(0)s(0)

2 [ i@

—pn (sn(t)),
= B (im(t)sn(t))
—(A+ ) (en(t))  (71)

2 i@

n2 [t
=2 [ en©)aBa(e).

en(t) — en(0)

in(t) —in(0)

L = Nl = g a0 (72
+2 [Cen©)aBa(e). (73)
Thus
sn(t) - 1(0) , en(t - n(0)
OO0 (st

t

—pn (en(t)) — pn ((in(t)))
Which yields

(sn(t)) = 1= (en(t)) — (in(t)) + &(t), (T4)

where
1 sl —si(0)
o) =~ [Tt
€ (t) - €h(0) 1 (t) - lh(O)
h : Lt : ]

Using lemma (3.3), we get
lim ¢(t) =0 a.s. (75)

t—00

By applying the It6’s formula to system
(11) leads to

din (en(t)) = (;@)deh—;eitt)(deﬁ
= Brim(t)sn(t)e,  (t)dt

—(\ ) = Sz | dt
SR ()5 (e (1)
i (0)sn(0)ei (DB (1)

—_
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Passing to integral from 0 to ¢, it follow that

t (Iney(t) — Iney(0)) =

B (im(t)sn(t)er (2))
— SR (RO 0e0) — Ba(0)
L (©sh(€)er (OB (€)

t Jo

1
—(A+pn + 5773)

If (H,) and (#H2) are hold, then we obtain
t™ (Inep(t) — Iney(0)) >
1
By {sn0) — S

—ZBy(t) = (4 g + ;ng)
L ©s(Eer B ).

Replacing (s, (t)) inside , gives

t7! (Iney(t) — Ine,(0)) >
Br = B (en(t)) — Ba (in(1))
—;GU% - %32(75)

B[ in@si(©er €aBi(6)

1
—(A+ pn + 5773)

+

From (73) we have

(1(0) = = (Bale) + [ [ en(©)aBa(©)

_[h(t) - ih(())]'
t

Using (74) we get
t~1 (Inep(t) — Ine,(0))

1
> 51—<)\+Mh+2773>

=51 (142 en(0) = ol
gyt 2 (5 [ ent@)aBae))

Hn

g+ B [ i ©s©)er ©dBi(€)

2 (B0-20))
o t

It follow that

Iney(t) > {51 — ()\ + pn + ;"73)] t

8 (1 + :h> /Ot en(€)de
LF(D).

F(t) = Iney(0) — ;en%t
A1t (t) — n2Ba(t);
1 | in(€)sn(©)e (€)dBy(E)

- [ en(©)apa(e)]
+5; (In(t) — in(0)) .
Clearly
lim ) =) _ oo and (76)
lim ln(eth(o) — 0 a.s. (77)

Addition, in view of the strong law of large
numbers (see [16]) to the Brownien motion,
we derive
By(t
lim 27()
t—00

=0 a.s. (78)

Following the well-know law, the local mar-
tingales of large number theorem, we obtain

Jim 1 [ (1O (aBi(E) = 0 s
tlgglo]lt Ot en(£)dBy(§) = 0 a.s.
So,
tllgloFit) = —;en% a.s. (79)

Using the result of the lemma 3.5 we get
1t
liminf — [ e,(£)d¢

t—oo t Jo

[61 - (A + o+ ;(773 + enf))]

B (1 + )\>
Hh

v

W _ 1
= - (S end) |
_ _Mh s
= 1 (1-7Rg) a.s. (80)
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If (H3) is hold, then we get

1
lim inf 5/0 en(€)de > 0 as.  (81)

Next, from we can obtain

liminf (i (t)) = —liminf (ey(t)) a.s.
t—r00 Uh t—r00
> 0 a.s.

4 Numerical simulations

In the current section, we perform numer-
ical simulations of the model (8). We use
the MATLAB software and the technique
developed in [11]. The values of the param-
eters taken to verify the extinction result in
the deterministic model are recorded in ta-
ble 4. By a simple calculation we verify that
the basic reproduction number Ry < 1. Ac-
cording to the theorem 2.2 the Lymphatic
filariasis will disappears. The theorem is
therefore highlighted in Figure 2.

In the stochastic model, to verify the ex-
tinction result, we keep the same values of
the indicated parameters in table 4. The
values of the white noise intensities used are
as follows

m = 03, N2 = 0125,
s = 0.225, s = 0.225.
(see [9] for the data).

This completes the proof.

By a simple calculation we obtain R} =
0.01, Ry = 0.0013, RS = 5.16.10* and
RE* = 0.01. According to the theorem
3.2 the disease will extinct. Figure 2 shows
that the numerical simulations enhance this
theorem.

Similarly, the parameter values chosen to
the persistence are also recorded in table
4. For the choice of the values of the white
noise intensities we rely on the data used
in [9]. We suppose that

m =0.03, 5o = 0.025,
ns = 0.0225, n, = 0.025.

We can simply be shown by a calculation
that Rf = 0.68 < 1. Theorem 3.3 implies
that model (11) is persistent in mean which
is supported by the figure 4.
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Figure 2: Plots showing the transmission dynamics of filariasis in the deterministic case when

Ro = 0.068.
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Figure 3: Graphs showing the transmission dynamics of filariasis for

RE® = 0.01.
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Figure 4: Graphs showing the transmission dynamics of filariasis for
Ry = 0.68.

5 Numerical
and remarks

example

Let’s judiciously choose values for the pa-
rameters, Aha ATTM /Bha /Bma Khy Hm, Qh and A

for which, the deterministic model is in ex-
tinction yet there is persistence in the mean
for the stochastic model.

Consider the following table containing
data when Lymphatic Filariosis is spread-
ing:

\ Parameters \ Ay \ A,

L Bn | B [ | pm | On ]

AL e |

’ Values

[ 0.00242.10* | 4.227.10* | 0.015 [ 0.91 [ 0.8 | 3.623 | 0.25 [ 0.01 | 0.00001 |

| Thresholds | Ry | Rj |

[ 0.068 | 0.89 |

’ Values

We can notice that Ry is less than one
thus according to the theorem 2.2 the equi-
librium point Fy of system (1) is globally
asymptotically stable that is to say that
the Lymphatic Filariosis stops spreading.
However R, being less than one shows that

Lymphatic Filariosis persists in the mean
according to the theorem 3.3 under the as-
sumptions (H), — (H);. Hence the impor-
tance to take the randomness aspect into
account in the modelling of the spread of
Lymphatic Filariosis.
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6 Conclusion

In this paper, we focused on the compara-
tive mathematical analysis of a determin-
istic and a stochastic epidemic model of
Lymphatic filariasis lymphatic. First, we
built a deterministic model of lymphatic fi-
lariasis. We showed the local stability of
the disease-free equilibrium point by the
Routh Hurtwiz criterion and then showed
the global stability of this point by using
the theorem of Varga and standard com-
parison theorem of Laksmikantham et al.
Then we developed a stochastic model by
adding white noises at the contact rates.
This addition is done in order to take into
account the fluctuations in the transmission
of filariasis lymphatic. We have shown the
existence and uniqueness of a positive so-
lution using a Lyapunov function and the
[t6’s formula. To analyse the extinction of
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